首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Metal Complexes with Anionic Ligands of Elements of the Main Group IV. VIII Pentacarbonyltrihalogenostannidometalate(O) Complexes of Chromium, Molybdenum, and Tungsten with Fluorine and Iodine Containing Trihalogenostannido Ligands In methylenechloride [As(C6H5)4][SnF3] readily reacts with the metalhexacarbonyls forming the arsoniumsalts of the pentacarbonyltrifluorostannidometalate(O) complexes, [M(CO)5SnF3]? (M ? Cr, Mo, W). Exclusively by the reaction of the intermediately formed complex Cr(CO)5THF only one pure triiodostannidometalate(O) Complex, [N(C2H5)4][Cr(CO)5SnJ3], could be isolated. The trihalogenostannidometalate(O) complexes [M(CO)5SnClX2]? (X ? F: M ? Cr, Mo, W; X ? J: M ? Cr) could be prepared by SnX2-insertion reactions of the [M(CO)5Cl]? complexes. The bonding properties of the halogenostannide ions are discussed on the bases of the IR spectra of their metalate(O) complexes.  相似文献   

2.
Transition Metal Phosphido Complexes. XIII. P-functional Phosphido-Bridged Heterobimetallic Complexes with and without a Metal-Metal Bond; P(SiMe3)2-Bridged cp(CO)xFe Derivatives cp(CO)2FeP(SiMe3)2 1 reacts with the carbonyl nitrosyl complexes Co(CO)3(NO), Fe(CO)2(NO)2,Mn(CO)(NO)3 substituting a CO ligand and with the THF complexes M′(CO)5THF(M′ = Cr, Mo, W), Mncp(CO)2THF MnMecp(CO)2 which can be obtained in solution substituting the THF ligand to give the phosphido-bridged bimetallic complexes cp(CO)2Fe[μ-P(SiMe3)2]M′Lm 2 (M′Lm = Co(CO)2(NO) b , Fe(CO)(NO)2 c , Mn(NO)3 d , Cr(CO)5 f , Mo(CO)5 g , W(CO)5 h , Mncp(CO)2 i , MnMecp(CO)2 j ). Solutions of Li(Me3Si)2PM′Lm 4e–l (M′Lm = Fe(CO)4 e , Crcp(CO)(NO) k , Vcp(CO)3 l ) are available by a selective cleavage reaction of a Si? P bond in the complexes (Me3Si)3PM′Lm 3e–l using n-BuLi. Reactions of cp(CO)2FeBr with 4e–l give the bimetallic complexes 2e–l . The open-chain complexes 2c, 2f, 2h–k undergo a photochemical decarbonylation reaction to form the phosphido-bridged bimetallic complexes cp(CO)Fe[μ-CO, μ-P(SiMe3)2]M′Lm?1(Fe-M′) 5 (M′Lm?1 = Fe(NO)2 c , Cr(CO)4 f , W(CO)4 h , Mncp(CO) i , MnMecp(CO) j , Crcp(NO) k ) containing a metal-metal bond. Equilibria between various isomers can partially be observed in solutions of the complexes 5. I.R., N.M.R., and mass spectral data are reported.  相似文献   

3.
Perfluoromethyl-Element-Ligands. XVIII. Preparation and Spectroscopic Investigation of M(CO)5L and M(CO)4L2 Complexes [L = MenP(CF3)3?n; n = 0–3; M = Cr, Mo, W] M(CO)5L and cis-M(CO)4L2 complexes, respectively [M = Cr, Mo, W; L = MenP(CF3)3?n; n = 0–3] are prepared reacting M(CO)5 · THF or M(CO)4norbor with L at room temperature. The cis-compounds isomerize above 50°C yielding the trans-complexes; the rate of isomerization increases with increasing number of CF3 groups. Thermal reaction of M(CO)6 (M = Cr, Mo, W) with P(CF3)3 yields M(CO)5P(CF3)3 and trans-M(CO)4[P(CF3)3]2. Introduction of three P(CF3)3 ligands by reaction with M(CO)3(cycloheptatriene) (M = Cr, Mo) proves unsuccessful; besides little M(CO)5P(CF3)3 trans-M(CO)4[P(CF3)3]2 is formed. The new compounds are characterized by analytical and spectroscopic (n.m.r., i.r., MS) methods.  相似文献   

4.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. VII Carbonyl Complexes of the Heptaphosphane(3) iPr2(Me3Si)P7 From the reaction of iPr2(Me3Si)P7 1 with one equivalent of Cr(CO)5THF the yellow products iPr2(H)P7[Cr(CO)5] 2 and iPr2(Me3Si)P7[Cr(CO)5] 3 were isolated by column chromatography on silicagel. The P? H group in 2 results from a cleavage of the P? SiMe3 bond during chromatography. The Cr(CO)5 group in 2 is linked to an iPr? Pe atom, in 3 to the Me3Si? Pe atom of the P7 skeleton. The substituents do not force the formation of a single isomer; nevertheless 3 ist considerably favoured as compared to 2 . From the reaction of 1 with 2 equivalents of Cr(CO)5THF the yellow iPr2(H)P7[Cr(CO)5]2 4 was isolated bearing one Cr(CO)5 group at an iPr? Pe atom, the other one at a Pb atom of the P7 skeleton. Compound 3 yields with Cr(CO)4NBD the red iPr2(Me3Si)P7[Cr(CO)5][Cr(CO)4] 5 . Three isomers of 5 appear. Two Pe atoms of 5 are bridged by the Cr(CO)4 group, the third Pe atom is linked to the Cr(CO)5 ligand. iPr2(H)P7[Fe(CO)4] was isolated from the reaction of 1 with Fe2(CO)9. 31P NMR and MS data are reported.  相似文献   

5.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. XI. Formation, Reactions, and Structures of Chromium Carbonyl Complexes from Reactions of Li(THF)22-(tBu2P)2P] with Cr(CO)5 · THF and Cr(CO)4 · NBD Reactions of Li(THF)22-(tBu2P)2P] 1 with Cr(CO)5 · THF yield Li(THF)2Et2O[Cr(CO)42-(tBu2P)2P}η1-Cr(CO)5] 2 and the compounds [Cr(CO)42-(tBu2P)2PH}] 3 , [Cr(CO)51-(tBu2P)2PH}] 4 , (tBu2P)2PH 5 and tBu2PH · Cr(CO)5 6 . The formation of 3, 4, 5 and 6 is due to byproducts coming from the synthesis of 1. 2 reacts with CH3COOH under formation of 3 . After addition of 12-crown-4 1 with NBD · Cr(CO)4 in THF forms Li(12-crown-4)2[Cr(CO)4-{η2-(tBu2P)2P}] 7 (yellow crystals). 7 reacts with CH3COOH to 3 – which regenerates 7 with LiBu – with Cr(CO)5THF to compound 2 , with NBD · Cr(CO)4 in THF to 2 and 3 (ratio 1 : 1). With EtBr, 7 forms [Cr(CO)42-(tBu2P)2PEt}] 8 , and [Cr(CO)42-(tBu2P)2PBr}] 9 with BrCH2? CH2Br. The compounds were characterized by means of 1H, 13C, 31P, 7Li NMR spectroscopy, IR spectroscopy, elementary analysis, mass spectra, and 2, 3 and 4 additionally by means of X-ray diffraction analysis. 2 crystallizes in the space group P1 with 2 formula units in the elementary cell; a = 10.137(9), b = 15.295(12), c = 15.897(14) Å; α = 101.82(7), β = 91.65(7), γ = 98.99(7)°; 3 crystallizes in the space group P2t/n with 4 molecules in the elementary unit; a = 11.914(6), b = 15.217(10), c = 14.534(10) Å; α = 90, β = 103.56(5), γ = 90°. 4 : space group P1 with 2 molecules in the elementary unit; a = 8.844(4), b = 12.291(6), c = 14.411(7) Å, α = 66.55(2), β = 89.27(2), γ = 71.44(2)°.  相似文献   

6.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XVI [1] Reactions of [g2-{P–PtBu2}Pt(PPh3)2] and [g2-{P–PtBu2}Pt(dppe)] with Metal Carbonyls. Formation of [g2-{(CO)5M · PPtBu2}Pt(PPh3)2] (M = Cr, W) and [g2-{(CO)5Cr · PPtBu2}Pt(dppe)] [η2-{P–PtBu2}Pt(PPh3)2] 4 reacts with M(CO)5 · THF (M = Cr, W) by adding the M(CO)5 group to the phosphinophosphinidene ligand yielding [η2-{(CO)5Cr · PPtBu2}Pt(PPh3)2] 1 , or [η2-{(CO)5W · PPtBu2}Pt(PPh3)2] 2 , respectively. Similarly, [η2-{P–PtBu2}Pt(dppe)] 5 yields [η2-{(CO)5Cr · PPtBu2}Pt(dppe)] 3 . Compounds 1 , 2 and 3 are characterized by their 1H- and 31P-NMR spectra, for 2 and 3 also crystal structure determinations were performed. 2 crystallizes in the monoclinic space group P21/n (no. 14) with a = 1422.7(1) pm, b = 1509.3(1) pm, c = 2262.4(2) pm, β = 103.669(9)°. 3 crystallizes in the triclinic space group P1 (no. 2) with a = 1064.55(9) pm, b = 1149.9(1) pm, c = 1693.2(1) pm, α = 88.020(8)°, β = 72.524(7)°, γ = 85.850(8)°.  相似文献   

7.
Polymeric Thiolato Complexes [M(SPh)3]∞ of the Metals Mo, W, Fe, and Ru with Linear Metal Chains. Synthesis and Crystal Structure of (OC)3Fe(SPh)3Fe(SPh)3Fe(CO)3 · 2(CH3)2CO At high temperature the reaction of the metal carbonyls Mo(CO)6, W(CO)6 and Fe(CO)5 with S2Ph2 (Ph = C6H5) yields the polymeric complexes [M(SPh)3]∞. Similarly [Ru(SPh)3]∞ can be obtained from ruthenium(III) acetylacetonate and HSPh. At room temperature under UV-irradiation Fe(CO)5 reacts with S2Ph2 to form the oligomeric complex (OC)3Fe(SPh)3Fe(SPh)3Fe(CO)3. The polymeric complexes [M(SPh)3]∞ (M = Mo, W, Fe, Ru) are composed of linear chains with bridging SPh-ligands between the metal atoms. Of these complexes [Fe(SPh)3]∞ is paramagnetic, whereas the others exhibit antiferromagnetic behaviour. The spin coupling is presumably connected with the formation of metal pairs, resulting in alternating shortened and extended distances in the metal chain. The oligomeric complex (OC)3Fe(SPh)3Fe(SPh)3Fe(CO)3 crystallizes triclinic in the space group P1 with z = 2. It has almost the symmetry D3d with a linear arrangement of the Fe atoms. The paramagnetism of Fe3(CO)6(SPh)6 can be explained by a d6 high spin configuration of the central atom and low spin behaviour of the two other Fe atoms, which are bonded to CO.  相似文献   

8.
Perfluoromethyl Element Ligands. XXX. Reactions of the Metal Hydridesπ-C5H5(CO)3MH (M = Cr, Mo, W) with Organoelement-Element Compounds of the Type R2 EER2 and RE′ ′E ′R (E = P, As; E′ = S, Se; R = CH3, CF3) Cleavage reactions of R2EER2 and RE′E′R, respectively, (E = P, As; E′ = S, Se; R = CH3, CF3) with complexes π-C5H5(CO)3MH (M = Cr, Mo, W) are used (a) to prepare known and novel complex subsituted phosphanes, arsanes, sulfanes, or selanes π-C5H5(CO)3MER2 (I) and π-C5H5(CO)3ME′R (II), respectively, (b) to study the reactivity trends as a function of E, E′, R, and M (see Inhaltsübersicht). The tendency observed for the formation of the binuclear complexes [π-C5H5(CO)2MER2]2 and [π-C5H5(CO)2ME′R]2, respectively, in following reactions of I and II increases in the series W ? Mo ≤ Cr and SeCF3 < As(CF3)2 < SCF3 ≈ P(CF3)2 < SeMe < AsMe2 ?; PMe2 ≈ SMe.  相似文献   

9.
Mono- and Di-t-Butylcyclopentadienyl Carbonyl Complexes of Iron and Molybdenum — Crystal Structure of [Cp″Mo(CO)2]2 (Cp″ = n5-C5H3-t-Bu2-1,3) Cothermolysis of M(CO)m (M = Fe, m = 5; M = Mo, m = 6) with t-Bu-substituted cyclopentadienyls constitutes a simple synthesis of complexes of the type [Cp*M(CO)n]2 (CP* = n5-C5H3 (t-Bu), R, R = H, t-Bu; M = Fe, Mo; n = 2, 3). Each synthesis has an optimal temperature. The yield of Fe complexes decreases at temperatures above 130°C because of decomposition of the product. Optimal yields of [Cp*Mo(CO)3]2 are obtained at 130–140°C, whereas at 160°C complexes of the type [Cp*Mo(CO)2]2 with formal Mo? Mo triple bonds are obtained. The structure of the complexes is discussed on the basis of 1H-, 13C-NMR, IR, and mass spectrometry. The structure of [Cp″Mo(CO)2]2 (Cp″ = n5-C5H3t-Bu2-1,3) was determined by X-ray crystallography at ?95°C. It crystallises in the space group Pbca, with cell constants a = 1808.6(6), b = 1308.5(4), c = 2507.9(9) pm, Z = 8, R = 0.031 for 3794 reflections. The Mo? Mo bond length of 253.3 pm is very long for a formal triple bond. The Cp″? Mo? Mo? Cp″ axis is non-linear.  相似文献   

10.
α-Functionalized 2-Methyl Phenylphosphines, 2-(HE? CH2)? C6H4? PH2 (E = O, NR, PH) II. Coordination Behaviour with Metal Carbonyles of Cr, Mo, W The preparation of different carbonyl substituted coordination compounds (M: Cr, Mo, W) of the phosphines 2-(HE? CH2)C6H4? PH2 (E = O, NPh, PH) is described. In one case, after deprotonation of a PH2 group a phosphine/phosphide migration of a W(CO)5 fragment is detected.  相似文献   

11.
Perfluoromethyl-Element-Ligands. XXXV. Reactivity of Metallated Phosphanes and Arsanes of the Type π-C5H5(CO)3MER2 (M ? Cr, Mo, W; E ? P, As; R ? CF3, CN) The influence of the complex fragments π-C5H5(CO)3M (M ? Cr, Mo, W) on the basicity of the metallated phosphanes or arsanes π-C5H5(CO)3MER2 (E ? P, As; R ? CF3, CN) has been investigated by reactions with sulfur, methyliodide, fluorotrichloromethane, and W(CO)5THF, respectively. π-C5H5(CO)3ME(CF3)2 (E ? P: 1a–c ; E ? As: 2a–c ) react with sulfur only for E ? P to give the complexes π-C5H5(CO)3P(S)(CF3)2 ( 5a–c ) in good yield. The attempted thermal transformation of the phosphane sulfides to η2 coordinated (CF3)2P?S complexes proves unsuccessful. The reactions of 1a–c, 2a–c and π-C5H5(CO)3MP(CN)2 ( 3a–c ) with CH3I or CCl3F do not lead to onium salts, but to cleavage of the M–E bonds forming π-C5H5(CO)3MX (X ? I, Cl) and CH3ER2 and R2ECCl2F, respectively. The reactivity depends on ER2 and M: P(CF3)2 > P(CN)2 > As(CF3)2; Cr > Mo > W. Due to the low donor ability of the complexes 1a–c, 2a–c and 3a–c binuclear compounds π-C5H5(CO)3MER2W(CO)5 (E ? As, R ? CF3: 11a–c ; E ? P, R ? CN: 12a–c ; ER2?P(CN)Ph: 13a, b ) are obtained only with the highly reactive W(CO)5THF. In case of the (CF3)2P bridged derivatives spontaneous CO-elimination leads to the threemembered ring systems ( 10a–c ).  相似文献   

12.
N, N-bis(pyrazol-1-ylmethyl)aminomethane (bpam) and N, N-bis(3, 5-dimethylpyrazol-1-ylmethyl)aminomethane (bdmpam) reacted with M(CO)6 or M(CO)3(CH3CN)3 in acetonitrile to give respectively fac-(bpam)M(CO)3 and fac-(bdmpam)M(CO)3 in good yields (M=Cr, Mo, W). These complexes are characterized by elemental analysis, IR, and NMR and compared with the related polypyrazolylborate complexes of the group VI metal carbonyls.  相似文献   

13.
Treatment of transition-metal—ammonia complexes with ketones yields complexes with RR′CNH ligands. Of particular interest is the stabilization of dialkylketimines such as e.g. (CH3)2CNH and C6H10NH in [M(CO)5{NHC(CH3)2}] or [M(CO)5 {NHC6H10}] (M = Cr, Mo, W). The principle of synthesis may be applied to a wide range of different metals and types of complexes, as can be shown by the synthesis of [C5H5Mn(CO)2 {NHC(CH3)2}], [C5H5Fe(CO)2{NHC(CH3)2}]PF6, [M(CO)4L2] (M = Cr, Mo, W; L = (CH3)2CNH, C6H10NH) and [W(CO)3(diphos){NHC(CH3)}2]. Treatment of [Cr(CO)5NH3] with urotropine gives [Cr(CO)5 {N4(CH2)6}] which is also obtained from [Cr(CO)5THF] and urotropine. The methods of preparation, reactions and spectroscopic properties of the complexes are reported.  相似文献   

14.
On Reactions of Subgroup. VI. Hexacarbonyls with Tin(II) and Germanium (II) Halides The neutral complexes M(CO)5SnX2 and M(CO)5GeCl2 (M = Cr, Mo, W; X = Cl, Br, J) have been prepared by a photochemical reaction between M(CO)6 and SnX2, or CsGeCl3 in THF. The reaction of these compounds with [N(CH3)4]X (X = Cl, Br, J) in THF was found to lead to a series of anions [M(CO)5SnX3]? or [M(CO)5GeCl3]? (M = Cr, Mo, W; X = Cl, Br, J), some of which have previously been prepared. The physical properties and IR-spectra of the above compounds are discussed.  相似文献   

15.
Trinuclear complexes of group 6, 8, and 9 transition metals with a (μ3‐BH) ligand [(μ3‐BH)(Cp*Rh)2(μ‐CO)M′(CO)5], 3 and 4 ( 3 : M′=Mo; 4 : M′=W) and 5 – 8 , [(Cp*Ru)33‐CO)23‐BH)(μ3‐E)(μ‐H){M′(CO)3}] ( 5 : M′=Cr, E=CO; 6 : M′=Mo, E=CO; 7 : M′=Mo, E=BH; 8 : M′=W, E=CO), have been synthesized from the reaction between nido‐[(Cp*M)2B3H7] (nido‐ 1 : M=Rh; nido‐ 2 : M=RuH, Cp*=η5‐C5Me5) and [M′(CO)5 ? thf] (M′=Mo and W). Compounds 3 and 4 are isoelectronic and isostructural with [(μ3‐BH)(Cp*Co)2(μ‐CO)M′(CO)5], (M′=Cr, Mo and W) and [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2M′′H(CO)3], (M′′=Mn and Re). All compounds are composed of a bridging borylene ligand (B?H) that is effectively stabilized by a trinuclear framework. In contrast, the reaction of nido‐ 1 with [Cr(CO)5 ? thf] gave [(Cp*Rh)2Cr(CO)3(μ‐CO)(μ3‐BH)(B2H4)] ( 9 ). The geometry of 9 can be viewed as a condensed polyhedron composed of [Rh2Cr(μ3‐BH)] and [Rh2CrB2], a tetrahedral and a square pyramidal geometry, respectively. The bonding of 9 can be considered by using the polyhedral fusion formalism of Mingos. All compounds have been characterized by using different spectroscopic studies and the molecular structures were determined by using single‐crystal X‐ray diffraction analysis.  相似文献   

16.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. VIII. Concerning the Different Tendencies of Silylated and Alkylated Phosphanes and Diphosphanes to Form Chromium Carbonyl Complexes The influence of the substituents Me3Si tBu and Me in phosphanes and diphosphanes on the formation of complex compounds with Cr(CO)5THF is investigated. tBu(Me3Si)P? P(SiMe3)2 1 and (tBu)2P? P(SiMe3)2 2, resp., react with Cr(CO)5THF 4 at ?18°C by coordinating Cr(CO)5 to the P(SiMe3)2 group to give tBu(Me3Si)P? PIV(SiMe3), · Cr(CO)5 1 a, tBu(Me3Si)PIV? PIV(SiMe3)2 · Cr(CO)4 1b and (tBu)2P? PIV(SiMe3)2 · Cr(CO)5 2a . In the reaction of 1 with 4 using a molar ratio of 1:2 at first 1 a is formed which reacts on to yield completely 1 b. In a mixture of the dissolved compounds (Me3Si)3P 5, (tBu)3P 6 and (tBu)3P? P(SiMe3)2 2 only 5 and 6 react with Cr(CO)5THF yielding (Me3Si)3P · Cr(CO)5 and (tBu)3P · Cr(CO)5, but 2 does not yet react. In a solution of (Me3Si)3P 5, P2Me4 7 and (Me3Si)2P? PMe2 3 only 5 and 7 react with Cr(CO)5THF (0.25 to 1.5 equivalents with respect to 3) to give (Me3Si)3P · Cr(CO)5, P2Me4 · Cr(CO)5 and P2Me4 · 2Cr(CO)5. The formation of complexes with Cr(CO)5THF of the phosphanes 5 and 6 is clearly favoured as compared to the silylated diphosphanes 2 and 3 (not to P2Me4); the PR2 groups (R = tBu, Me in 2 or 3 ) don't have a strong influence.  相似文献   

17.
Attempts to synthesize complexes of group 6 carbonyl compounds [M(CO)6] (M = Cr, Mo, W) with the carbone C(PPh3)2 ( 1 ) via the photo chemically created adducts [(CO)5M(THF)] lead to quantitative formation of the salts [HC(PPh3)2]2[M2(CO)10] ( 2 , Cr; 3 , Mo; 4 , W). Alternatively, a long-time thermal reaction of [Mo(CO)6] performed with 1 in THF generates a series of products initiated by a Wittig-type reaction. In addition to 3 , minor amounts of [(CO)5MoCCPPh3] ( 8 ), [(CO)5MoO2CC{PPh3}2] ( 5 ), and the carbonate complexes [HC(PPh3)2]2[(CO)5Mo(CO3)Mo(CO)4] ( 6 ) and [HC(PPh3)2]2[(CO)4Mo(CO3)Mo(CO)4] ( 7 ) were found. Compounds 2 , 3 , 5 , 6 , and 7 were characterized by X-ray analyses, 31P NMR, and IR spectroscopy. The water, necessary for the formation of the carbonate, stems from decomposition of THF.  相似文献   

18.
Formation of Organosilicon Compounds. 80. Si-Metalation of 1,3,5-Trisilacyclohexanes by Means of Trisition Metal Complexes Several Si-transition metal-substituted 1,3,5-trisilacyclohexanes are reported. l-Bromo-1,3,5-trisilacyclohexane reacts with the metal carbonyl anions W(CO)5cp?, Mo(CO)3cp-, Cr(CO)3cp?, Mn(CO)3?, Fe(CO)2cp?, or Co(CO)4minus;, resp., yielding monosubstituted derivatives as 6, e. g.(cp = π-cyclopentadienyl). 1,3-Dibromo-1,3,5-trisilacyclohexane forms disubstituted compounds aa 7, e. g., with 2 moles of the metal carbonyl anions Fe(CO)2cp?, Mn(CO)5? or Co(CO)4?. Starting from (H2c? SiHBr)3 compound 13 is accessible by reaction with KCo(CO)4. In the soluted compounds the metal carbonyl groups occupy the equatorial positions in the chair form of the six membered ring. The reaction of 13 with Co2(CO)8 yields 17 , whereas 6 preferrably forms 18 . Starting from (H2C? SiH2)3 the reaction with Co2(CO)2 preferrably yields 19. The reported compounds are crystalline, air – and moisture – sensitive. The reported formulae are assured by analysis, IR, and NMR investigations.  相似文献   

19.
Reaction of Cyclopentadienyl Substituted Molybdenum(V) Tetrachlorides with LiPH(2,4,6-Bu C6H2) and KPPh2(Dioxane)2. Crystal Structures of [Cp0Mo(μ? Cl)2]2 and [Cp Mo2(μ? Cl)3(μ? PPh2)] (Cp0 = C5Me4Et) The reaction of [Cp0Mo(CO)3]2 (Cp0 = C5Me4Et) and [Cp′Mo(CO)3]2 (Cp′ = C5H4Me) with PCl5 in CH3CN furnishes the Mo(V) complexes Cp0MoCl4(CH3CN) 1 and Cp′MoCl4(CH3CN) 2 in good yields. While 1 and 2 are reduced by LiPH(2,4,6-BuC6H2) to the Mo(III) complexes [Cp0Mo(μ? Cl)2]2 3 and [Cp′Mo(μ? Cl)2]2 4 , the reaction of 1 with KPPh2(dioxane)2 yields the reduction/substitution product [CpMo2(μ? Cl)3(μ? PPh)] 5 in low yield. 1 – 4 were characterized spectroscopically (i.r., mass, 3 and 4 also n.m.r.). An X-ray crystal structure determination was carried out on 3 and 5. 3 crystallizes in the triclinic space group P1 (No. 2) with a = 8.278(4), b = 12.508(7), c = 12.826(7) Å, α = 86.78(5), β = 81.55(2), γ = 75.65(4)°, V = 1 272.4 Å3 and two formula units in the unit cell (data collection at ? 67°C, 4 255 independent observed reflections, R = 2.9%); 5 crystallizes in the triclinic space group P1 (No. 2) with a = 11.536(8), b = 12.307(9), c = 13.157(9) Å, α = 91.41(6), β = 100.42(5), γ = 112.26(6)°, V = 1 688.7 Å3 and two formula units in the unit cell (data collection at ? 60°C, 6 147 independent observed reflections, R = 4.9%). The crystal structure of 3 shows the presence of centrosymmetric dimeric molecules with four bridging chloro ligands. In 5, two Mo atoms are bridged by three chloro ligands and one PPh2 ligand. The Mo? Mo bond length in 3 and 5 (2.600(2), 2.596(2) Å and 2.6388(8) Å) is in agreement with a Mo? Mo bond.  相似文献   

20.
Transition Metal Chalkogen Compounds. Preparation, I.R. spectra, Raman Spectra, and X-Ray Investigations on Compounds of the Type A3(MeOS3)CI and A2 MeOS3(A = K, Rb; Me = Mo, W) The preparation, vibrational spectra, and x-ray data of compounds of the type A3(MeOS3)Cl and A2MeOS3 (A = K, Rb; Me = Mo, W) are reported. K3(MoOS3)Cl, K3(WOS3)Cl, and Rb3(WOS3)Cl are novel salts which can be prepared by passing H2S through strong alcaline aqueous MoO and WO solutions containing KCl or RbCl. The salts crystallize in space group Pca21? C (No. 29) (Z = 4) with discrete MeOS tetrahedrons. The compounds A2MeOS3 (A = K, Rb; Ne = Mo, W) which are in part precipitable only by addition of organic solvents crystallize in space group Pnma? D (No. 62) with four formula units per unit cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号