首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The synthesis of propargyl‐functional poly(carbonate)s with different content of glycidyl propargyl ether (GPE) units is achieved via the copolymerization of propargyl glycidyl ether and carbon dioxide. A new type of functional poly(carbonate) synthesized directly from CO2 and the glycidyl ether is obtained. The resulting polymers show moderate polydispersities in the range of 1.6–2.5 and molecular weights in the range of 7000–10 500 g mol−1. The synthesized copolymers with varying number of alkyne functionalities and benzyl azide are used for the copper‐catalyzed Huisgen‐1,3‐dipolar addition. Moreover, the presence of vicinal alkyne groups opens a general pathway to produce functional aliphatic poly(carbonate)s from a single polymer scaffold.

  相似文献   


2.
(1‐Adamantyl)methyl glycidyl ether (AdaGE) is introduced as a versatile monomer for oxyanionic polymerization, enabling controlled incorporation of adamantyl moieties in aliphatic polyethers. Via copolymerization with ethoxyethyl glycidyl ether (EEGE) and subsequent cleavage of the acetal protection groups of EEGE, hydrophilic linear polyglycerols with an adjustable amount of pendant adamantyl moieties are obtained. The adamantyl unit permits control over thermal properties and solubility profile of these polymers (LCST). Additionally, AdaGE is utilized as a termination agent in carbanionic polymerization, affording adamantyl‐terminated polymers. Using these structures as macroinitiators for the polymerization of ethylene oxide affords amphiphilic, in‐chain adamantyl‐functionalized block copolymers.

  相似文献   


3.
Endowing unimolecular soft nanoobjects with biomimetic functions is attracting significant interest in the emerging field of single‐chain technology. Inspired by the compartmentalized structure and polymerase activity of metalloenzymes, copper‐containing compact nanoglobules have been designed, synthesized, and characterized endowed with metalloenzyme mimicking characteristics toward controlled synthesis of water‐soluble polymers and thermoresponsive hydrogels. When compared to metalloenzymes, artificial nanoobjects endowed with metalloenzyme mimicking characteristics offer increased stability against thermal changes and reduced degradability by hydrolytic enzymes.

  相似文献   


4.
A novel bifunctional monomer, namely maleimide glycidyl ether (MalGE), prepared in a four‐step reaction sequence is introduced. This monomer allows for selective (co)polymerization of the epoxide group via cationic ring‐opening polymerization, preserving the maleimide functionality. On the other hand, the maleimide functionality can be copolymerized via radical techniques, preserving the epoxide moiety. Cationic ring‐opening multibranching copolymerization of MalGE with glycidol was performed, and a MalGE content of up to 24 mol% could be incorporated into the hyperbranched polymer backbone (Mn = 1000–3000 g mol−1). Preservation of the maleimide functionality during cationic copolymerization was verified via NMR spectroscopy. Subsequently, the maleimide moiety was radically crosslinked to generate hydrogels and additionally employed to perform Diels‐Alder (DA) “click” reactions with (functional) dienes after the polymerization process. Radical copolymerization of MalGE with styrene (Mn = 5000–9000 g mol−1) enabled the synthesis of a styrene copolymer with epoxide functionalities that are useful for versatile crosslinking and grafting reactions.

  相似文献   


5.
The fluorinated FI–Ti catalyst bis[N‐(3‐propylsalicylidene)‐pentafluoroanilinato] titanium(IV) dichloride (PFI) combined with dried methylaluminoxane (dMAO) is investigated for ethylene/1‐hexene copolymerization at 50 °C under atmospheric pressure. The reaction shows good livingness and has a high activity at high [H]/[E] molar ratios up to 14. Ultrahigh molecular weight (>1.4 × 106 g mol−1) copolymers with high 1‐hexene content (>25 mol%) are prepared. Kinetic parameters of the copolymerization with PFI are determined. The first‐order Markov statistics applies and the product of the reactivity ratios r1r2 is close to 1, giving random unit distributions.

  相似文献   


6.
Supramolecular copolymers can not only enrich the diversity of the polymer backbone but also exhibit certain special and improved properties compared with supramolecular homopolymers. However, the synthesis procedure of supramolecular copolymers is relatively complicated and time‐consuming. Herein, a simple transformation from an AB2‐based supramolecular hyperbranched homopolymer to an AB2+CD2‐based supramolecular hyperbranched alternating copolymer by the “competitive self‐sorting” strategy is reported. After adding CD2 monomer, which bears a competitive neutral guest moiety ( TAPN ) and two receptive benzo‐21‐crown‐7 host moieties ( B21C7 ), to the as‐prepared AB2‐type supramolecular hyperbranched homopolymer constructed by the self‐assembly of dialkylammonium salt ( DAAS , A group)‐functionalized pillar[5]arene ( MeP5 , B groups) monomers, the initial homopolymer structure is disrupted and then reassemble into a new supramolecular hyperbranched alternating copolymer based on the competitive self‐sorting interaction between MeP5 ‐ TAPN and B21C7 ‐ DAAS . This study supplies a convenient approach to directly transform supramolecular homopolymers into supramolecular copolymers.

  相似文献   


7.
The novel hyperbranched poly(methyl acrylate)‐block‐poly(acrylic acid)s (HBPMA‐b‐PAAs) are successfully synthesized via single‐electron transfer‐living radical polymerization (SET‐LRP), followed with hydrolysis reaction. The copolymer solution could spontaneously form unimolecular micelles composed of the hydrophobic core (PMA) and the hydrophilic shell (PAA) in water. Results show that the size of spherical particles increases from 8.18 to 19.18 nm with increased pH from 3.0 to 12.0. Most interestingly, the unique regular quadrangular prisms with the large microstructure (5.70 μm in length, and 0.47 μm in width) are observed by the self‐assembly of unimolecular micelles when pH value is below 2. Such self‐assembly behavior of HBPMA‐b‐PAA in solution is significantly influenced by the pH cycle times and concentration, which show that increased polymer concentration favors aggregate growth.

  相似文献   


8.
Furfuryl glycidyl ether (FGE) represents a highly versatile monomer for the preparation of reversibly cross‐linkable nanostructured materials via Diels–Alder reactions. Here, the use of FGE for the mid‐chain functionalization of a P2VP‐b‐PEO diblock copolymer is reported. The material features one furan moiety at the block junction, P2VP68‐FGE‐b‐PEO390, which can be subsequently addressed in Diels–Alder reactions using maleimide‐functionalized counterparts. The presence of the FGE moiety enables the introduction of dyes as model labels or the formation of hetero‐grafted brushes as shell on hybrid Au@Polymer nanoparticles. This renders P2VP68‐FGE‐b‐PEO390, a powerful tool for selective functionalization reactions, including the modification of surfaces.

  相似文献   


9.
Electron‐deficient heterocycle 1,3,4‐oxadiazole is first introduced to the 2‐position of thieno[3,4‐b]thiophene (TT) to construct a new building block 2‐(thieno[3,4‐b]thiophen‐2‐yl)‐5‐(alkylthio)‐1,3,4‐oxadiazole (TTSO) with alkylthio chain. The polymer PBDT–TTSO based on TTSO and benzodithiophene (BDT) exhibits a deep lying highest occupied molecular orbital (HOMO) energy level of −5.32 eV and low‐bandgap of 1.62 eV. The power conversion efficiency (PCE) of 5.86% is obtained with a relatively high V OC of 0.74 V, a J SC of 13.1 mA cm−2, and FF of 60.5%. Furthermore, as S atom in thioether can be oxidized easily, the optoelectronic properties of PBDT–TTSO treated with different oxidants are preliminary investigated. Interestingly, the oxidation products still maintain high PCE with reduction less than 30%. This work demonstrates a new method to regulate HOMO energy levels by introducing electron‐deficient aromatic heterocyclic moiety.

  相似文献   


10.
Thiol‐click reactions lead to polymeric materials with a wide range of interesting mechanical, electrical, and optical properties. However, this reaction mechanism typically results in bulk materials with a low glass transition temperature (Tg) due to rotational flexibility around the thioether linkages found in networks such as thiol‐ene, thiol‐epoxy, and thiol‐acrylate systems. This report explores the thiol‐maleimide reaction utilized for the first time as a solvent‐free reaction system to synthesize high‐Tg thermosetting networks. Through thermomechanical characterization via dynamic mechanical analysis, the homogeneity and Tgs of thiol‐maleimide networks are compared to similarly structured thiol‐ene and thiol‐epoxy networks. While preliminary data show more heterogeneous networks for thiol‐maleimide systems, bulk materials exhibit Tgs 80 °C higher than other thiol‐click systems explored herein. Finally, hollow tubes are synthesized using each thiol‐click reaction mechanism and employed in low‐ and high‐temperature environments, demonstrating the ability to withstand a compressive radial 100 N deformation at 100 °C wherein other thiol‐click systems fail mechanically.

  相似文献   


11.
An interesting cooperation between Candida antarctica Lipase B (CAL‐B) and alkaline protease from Bacillus subtilis (BSP) in the copolymerization of bulky ibuprofen‐containing hydroxyacid methyl ester (HAEP) and ε‐caprolactone (ε‐CL) is observed. This cooperation improved the of the polymers from 3130 (CAL‐B) to 9200 g mol–1 (CAL‐B/BSP). Experimental results clearly indicate that CAL‐B mainly catalyzes the ring‐opening polymerization (ROP) of ε‐CL under the initiation of HAEP to form the homopolymer of ε‐CL, while BSP catalyzes the subsequent polycondensation of the ROP product to yield the copolymer with increased molecular weight. Furthermore, using suitable chemo‐enzymatic methods, valuable polyesters with chiral (R)‐ or (S)‐ibuprofen pendants can be tailor‐made.

  相似文献   


12.
A commercially available palladium N‐heterocyclic carbene (Pd‐NHC) precatalyst is used to initiate chain‐growth polymerization of 2‐bromo‐3‐hexyl‐5‐trimethylstannylthiophene. The molecular weight of the resultant poly(3‐hexylthiophene) can be modulated (7 to 73 kDa, Đ = 1.14 to 1.53) by varying the catalyst concentration. Mass spectrometry data confirm control over the polymer end groups and 1H NMR spectroscopy reveals that the palladium catalyst is capable of “ring‐walking”. A linear relationship between Mn and monomer conversion is observed. Atomic force microscopy and X‐ray scattering verify the regioregular nature of the resultant polythiophene.

  相似文献   


13.
New monolithic materials comprising zeolitic imidazolate framework (ZIF‐8) located on the pore surface of poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) monolith previously functionalized with N‐(3‐aminopropyl)‐imidazole have been prepared via a layer‐by‐layer self‐assembly strategy. These new ZIF‐8@monolith hybrids are used as solid‐phase carriers for enzyme immobilization. Their performance is demonstrated with immobilization of a model proteolytic enzyme trypsin. The best of the conjugates enable very efficient digestion of proteins that can be achieved in mere 43 s.

  相似文献   


14.
Due to the axial group initiation in traditional (salen)CoX/quaternary ammonium catalyst system, it is difficult to construct single active center propagating polycarbonates for copolymerization of CO2/epoxides. Here a redox‐responsive poly(vinyl cyclohexene carbonate) (PVCHC) with detachable disulfide‐bond backbone is synthesized in a controllable manner using (salen)CoTFA/[bis(triphenylphosphine)iminium, [PPN]TFA binary catalyst, where the axial group initiation is depressed by judiciously choosing 3,3′‐dithiodipropionic acid as starter. While for those comonomers failing to obtain polycarbonate with unimodal gel permeation chromatography (GPC) curve, a versatile method is developed by combination of immortal copolymerization and prereaction approach, and functional aliphatic polycarbonates having well‐defined architecture and narrow polydispersity can be prepared. The resulting PVCHC can be further functionalized with alkenes by versatile cross‐metathesis reaction to tune the physicochemical properties. The combination of immortal polymerization and prereaction approach creates a powerful platform for controllable synthesis of functional CO2‐based polycarbonates.

  相似文献   


15.
A one‐pot procedure that straightforwardly combines reversible addition‐fragmentation chain transfer (RAFT) polymerization and end group transformation to remove the RAFT end groups is developed for the synthesis of well‐defined poly(meth)acrylates and polyacrylamides with inert end groups. This procedure only requires the addition of an amine at the end of the standard RAFT polymerization procedure, which avoids the separation and purification of the intermediate polymers and, hence, extremely reduces the working time and utilized amount of solvents. Upon addition of the amine, a thiol group is formed by aminolysis of the thiocarbonylthio group, which subsequently undergoes Michael addition with unreacted monomer leading to an inert thioether functionalized polymer.

  相似文献   


16.
The controlled folding of a single polymer chain is for the first time realized by metal‐ complexation. α,ω‐Bromine functional linear polymers are prepared via activators regenerated by electron transfer (ARGET) ATRP (,SEC = 5900 g mol−1, Đ = 1.07 and 12 000 g mol−1, Đ = 1.06) and the end groups of the polymers are subsequently converted to azide functionalities. A copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction is carried out in the presence of a novel triphenylphosphine ligand and the polymers to afford homotelechelic bis‐triphenylphosphine polymeric‐macroligands (MLs) (,SEC = 6600 g mol−1, Đ = 1.07, and 12 800 g mol−1, Đ = 1.06). Single‐chain metal complexes (SCMCs) are formed in the presence of Pd(II) ions in highly diluted solution at ambient temperature. The results derived via 1H and 31P{1H} NMR experiments, SEC, and DLS unambiguously evidence the efficient formation of SCMCs via metal ligand complexation.

  相似文献   


17.
Five three‐component chiral polymers incorporating (S )‐1,1′‐binaphthyl, tetraphenylethene (TPE) and fluorene moieties are designed and synthesized by Pd‐catalyzed Sonogashira reaction. All these polymers show obvious aggregation induced emission enhancement response behavior in the fluorescence emission region of 460–480 nm. Interestingly, three of them show aggregation‐induced circularly polarized luminescence (AICPL) signals in tetrahydrofuran–H2O mixtures. Most importantly, these AICPL signals can be tuned by changing the molar ratios of TPE and fluorene components through fluorescence resonance energy transfer and give the highest glum = ±4.0 × 10−3. This work provides a novel strategy for developing AICPL‐enhanced materials.

  相似文献   


18.
A novel water insoluble, multifunctional poly(ethylene glycol), poly(hydrazide ethylene glycol‐co‐benzyl glycidyl ether) (P(HZ‐co‐BnGE)), is synthesized via thiol‐ene click reaction of poly(allyl glycidyl ether‐co‐benzyl glycidyl ether) (P(AGE‐co‐BnGE)). The base polymer P(AGE‐co‐BnGE) is previously prepared by anionic ring‐opening copolymerization of the corresponding monomers. To demonstrate utility, bicompartmental microspheres and microcylinders containing P(HZ‐co‐BnGE) in one of the compartments are prepared via electrohydrodynamic (EHD) co‐jetting. Next, spatially controlled surface reactivity toward sugars is demonstrated by selective binding of 2α‐mannobiose to the P(HZ‐co‐BnGE) compartment only, as confirmed by a carbohydrate‐lectin‐binding assay. These sugar‐reactive hydrazide‐presenting microparticles have potential applications for glyco‐targeted drug delivery.

  相似文献   


19.
A random copolymer of ethylene oxide with CO2, namely, poly(ethylene carbonate/ethylene oxide) (P(EC/EO)), has been synthesized as a novel candidate for polymer electrolytes. Electrolyte composed of P(EC/EO) and lithium bis(fluorosulfonyl)imide has an ionic conductivity of 0.48 mS cm−1 and a Li transference number (t +) of 0.66 at 60 °C. To study ion‐conductive behavior of P(EC/EO)‐based electrolytes, the Fourier transform infrared (FT‐IR) technique is used to analyze the interactions between Li+ and functional groups of the copolymer. The carbonate groups may interact preferentially with Li+ rather than the ether groups in P(EC/EO). This study suggests that copolymerization of carbonate and flexible ether units can realize both high conductivity and t + for polymer electrolytes. High‐performance P(EC/EO) electrolyte is expected to be a candidate material for use in all‐solid‐state batteries.

  相似文献   


20.
The polymerisation of N‐acryloylmorpholine in water is reported utilising Cu(0)‐mediated living radical polymerisation (SET‐LRP). The inherent instability of [CuI(Me6‐Tren)Br] in aqueous solution is exploited via rapid disproportionation to prepare Cu(0) particles and [CuII(Me6‐Tren)Br2] in situ prior to addition of monomer and initiator. Quantitative conversion is attained within 30 min for various degrees of polymerisation (DPn = 20–640) with SEC showing symmetrical narrow molecular weight distributions (Đ < 1.18) in all cases. Optimised conditions are subsequently applied for the preparation of a diblock copolymer poly(NIPAm)‐b‐(N‐acryloylmorpholine), illustrating the versatility of this approach.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号