首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption of hydrogen sulfide (H2S) on the external and internal surface of Zn12O12 nanocluster was studied by using density functional calculations. The results indicate that the H2S molecule is physically adsorbed or chemically dissociated by the nanocluster. It was found that the H2S molecule can dissociate into –H and–SH fragments, suggesting that the nanocluster might be a potential catalyst for dissociation of the H2S molecule. Also, dissociation of H2S to S species in internal surface of the Zn12O12 nanocluster is energetically impossible. The HOMO–LUMO energy gap of H2S dissociation configuration is changed about 27.68 %, indicating that the electronic properties of the nanocluster by dissociation process have strongly changed.  相似文献   

2.
The adsorption of transition metal cations and inorganic anions from aqueous solutions on microdispersed sintered detonation nanodiamond (MSDN) is systematically studied. The selectivity series Fe3+ > Al3+ > Cu2+ > Mn2+ > Zn2+ > Cd2+ > Co2+ > Ni2+ with maximum adsorption capacity between 2 and 5 µmol g?1 is obtained. It is found that anions may significantly contribute to the adsorption of transition metal cations, so the adsorption of CH3COO?, Cl?, B4O7 2?, ClO4 ?, I?, SO4 2?, C2O4 2?, PO4 3? is also studied. For the first time, dominating adsorption of anions over cations is demonstrated for detonation nanodiamond. The maximum anion-exchange capacity of 50–150 µmol g?1 is found for MSDN. Beside of electrostatic interactions, the formation of complexes with hydroxyl groups and interaction with metal impurities contribute to the adsorption of B4O7 2? and PO4 3?, respectively. Therefore, anion exchange selectivity of MSDN is different from that observed for common anion exchange resins. In all cases, the adsorption on MSDN obeys Langmuir law. The pH effect on the adsorption of SO4 2?, PO4 3? and B4O7 2? is different from that observed for other anions due to specific interactions.  相似文献   

3.
Present study offers great prospects for the adsorption of anti-inflammatory celecoxib molecule (CXB) over the surface of zinc oxide (Zn12O12) and magnesium oxide (Mg12O12) nanoclusters in several environments by performing robust theoretical calculations. Density functional theory (DFT), time-dependent density functional theory (TDDFT) and molecular docking calculations have been extensively carried out to predict the foremost optimum site of CXB adsorption. It has been observed that the CXB molecule prefers to be adsorbed by its SO2 site on the Zn-O and Mg-O bonds of the Zn12O12 and Mg12O12 nanoclusters instead of NH2 and NH sites, where electrostatic interactions dominate over the bonding characteristics of the conjugate complexes. Furthermore, the presence of interactions between the CXB molecule and nanoclusters has also been evidenced by the UV–Vis absorption spectra and IR spectra. Molecular docking analysis has revealed that both adsorption states including CXB/Zn12O12 and CXB/Mg12O12 have good inhibitory potential against protein tumor necrosis factor alpha (TNF-α) and Interleukin-1 (IL-1), and human epidermal growth factor receptor 2 (HER2). Hence they might be explored as efficient TNF-α, IL-1, and HER2 inhibitors. Hence from the study, it can be anticipated that these nanoclusters can behave as an appropriate biomedical carrier for the CXB drug delivery.  相似文献   

4.
This study provides details of the electronic and optical structures and binding energies of sarin (SF) and chlorosarin (SC) with Al–N and Al–P surfaces of Al12N12 and Al12P12 nanoclusters in the gas phase. The adsorption mechanism of SF and SC on these nanoclusters containing the Al3+ central cation was studied. Optimized geometries and thermodynamic parameters of SF and SC adsorption complexes were calculated. SF and SC are chemisorbed on these nanoclusters because of the formation of PO···Al bonds. The chemical bond is formed between an oxygen atom of SF and SC and an aluminum atom of fullerene-likes (chemisorption). However, the binding energies of the complexes with the Al12N12 nanocluster are larger than these values for the Al12P12 nanocluster. The interaction enthalpy and Gibbs free energy of all studied systems were found to be negative. We can conclude that SF and SC will be adsorbed preferably on Al12N12 nanocluster.  相似文献   

5.
BaFe12O19–Ni0.8Zn0.2Fe2O4/graphene nanocomposites were prepared by a deoxidation technique. The structure, morphology and electromagnetic properties of the samples were detected by means of X-ray diffraction, scanning electron microscope, transmission electron microscopy, Raman, thermogravimetric analysis. Results show that the BaFe12O19–Ni0.8Zn0.2Fe2O4 nanoparticles dispersed on the graphene sheets. The magnetic properties of the composites decreased with the increasing of graphene contents, However, the electrical conductivity is in the contrary. Measurement of electromagnetic parameters shows that when the mass ratio of BaFe12O19–Ni0.8Zn0.2Fe2O4 to graphene is 5:1, it can be matched well. The microwave absorption property of it is below ?10 dB at 6.8–8.2 GHz and the minimum loss value is ?19.63 dB at 7.2 GHz. The introduction of graphene can increase the dielectric loss and has an important effect on the microwave absorption properties.  相似文献   

6.
In this work, the interaction of an aspirin (AS) molecule with the external surface of a boron nitride fullerene-like nanocage (B12N12) is studied by means of density functional theory (DFT) calculations. Equilibrium geometry, electronic properties, adsorption energy and thermodynamic stability are identified for all of the adsorbed configurations. Four stable configurations are obtained for the interaction of AS molecule with the B12N12 nanocage, with adsorption energies in the range of ?10.1 to ?37.7 kcal/mol (at the M06-2X/6-31 + G** level). Our results clearly indicate that Al-doping of the B12N12 tends to increase the adsorption energy and thermodynamic stability of AS molecule over this nanocage. We further study the adsorption of AS over the B12N12 and B11N12Al in the presence of a protic (water) or aprotic (benzene) solvent. It is found that the calculated binding distances and adsorption energies by the PCM and CPCM solvent models are very similar, especially for the B12N12 complexes. According to time-dependent DFT calculations, the Al-doping can shift estimated λ max values toward longer wavelengths (redshift). Solvent effects also have an important influence on the calculated electronic absorption spectra of AS-B12N12 complexes.  相似文献   

7.
An ab initio derived transferable polarizable force‐field has been developed for Zinc sulphide (ZnS) nanoparticle (NP) and ZnS NP‐PMMA nanocomposite. The structure and elastic constants of bulk ZnS using the new force‐field are within a few percent of experimental observables. The new force‐field show remarkable ability to reproduce structures and nucleation energies of nanoclusters (Zn1S1‐Zn12S12) as validated with that of the density functional theory calculations. A qualitative agreement of the radial distribution functions of Zn? O, in a ZnS nanocluster‐PMMA system, obtained using molecular mechanics molecular dynamics (MD) and ab initio MD (AIMD) simulations indicates that the ZnS–PMMA interaction through Zn? O bonding is explained satisfactorily by our force‐field. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Zn1?xNixFe2O4 (0.0 ≤ x ≤ 1.0) nanoparticles are prepared by sol–gel method using urea as a neutralizing agent. The evaluation of XRD patterns and TEM images indicated fine particle nature. The average crystallite size increased from 10 to 24 nm, whereas lattice parameters and density decreased with increasing Ni content (x). Infrared spectra showed characteristic features of spinel structure along with a strong influence of compositional variation. Magnetic measurements reveal a maximum saturation magnetization for Zn0.5Ni0.5Fe2O4 (x = 0.5); however, reduced value of magnetization is attributed to the canted spin structure and weakening of Fe3+(A)–Fe3+(B) interactions at the surface of the nanoparticles. Impedance analysis for different electro-active regions are carried out at room temperature with Ni substitution. The existence of different relaxations associated with grain, grain boundaries and electrode effects are discussed with composition. It is suggested that x = 0.5 is an optimal composition in Zn1?xNixFe2O4 system with moderate magnetization, colossal resistivity and high value of dielectric constant at low frequency for their possible usage in field sensor applications.  相似文献   

9.
Nitridated mesoporous Li4Ti5O12 spheres were synthesized by a simple ammonia treatment of Li4Ti5O12 derived from mesoporous TiO2 particles and lithium acetate dihydrate via a solid state reaction in the presence of polyethylene glycol 20000. The carbonization of polyethylene glycol could effectively restrict the growth of primary particles, which was favorable for lithium ions diffusing into the nanosized TiO2 lattice during the solid state reaction to form a pure phase Li4Ti5O12. After a subsequent thermal nitridation treatment, a high conductive thin TiO x N y layer was in situ constructed on the surface of the primary nanoparticles. As a result, the nitridated mesoporous Li4Ti5O12 structure, possessing shorter lithium-ion diffusion path and better electrical conductivity, displays significantly improved rate capability. The discharge capacity reaches 138 mAh?g?1 at 10 C rate and 120 mAh?g?1 at 20 C rate in the voltage range of 1–3 V.  相似文献   

10.
11.
A new nanoadsorbent A/Fe3O4/GO (AFG) is developed for eliminating Cs+ from water by anchoring Fe3O4 nanoparticles onto graphene oxide (GO/Fe3O4) and in situ controllable growing nanocrystal of ammonium 12-molybdophosphate (A) on the surface of GO/Fe3O4 with a simple procedure at room temperature. AFG shows a high adsorption capacity for Cs+ (Qmax?=?82.71 mg g?1) and fast kinetics (>?88.83% elimination efficiency within only 1 min and reaches the end equilibrium in about 10 min). It presents good selectivity for Cs+ in a wide pH range (2.0–10). Furthermore, it can be recovered from water with easily magnetic separation.  相似文献   

12.
A new hybrid material based on polyoxomolybdate, [C2H6N2O–H]3[(PO4)Mo12O36] · 3H2O (1), has been synthesized and characterized by elemental analysis, infrared and mass spectroscopy, proton nuclear magnetic resonance and single-crystal X-ray diffraction. Compound 1 crystallizes in the hexagonal system, space group R-3, a = 19.0833(6) Å, c = 20.8672(13) Å, V = 581.1(5) Å3, Z = 6, R1 = 0.0202, wR2 = 0.0508. The methyluronium moiety and 12-molybdophosphate anion are held together in a network through hydrogen-bonding and electrostatic interactions. Each methylurea molecule, which is protonated, is stabilized via present strong hydrogen bonding with water molecules in the unit cell. Since this strong hydrogen bonding can play an important role in the formation of unique novelty of titled supramolecular network, we have carried out theoretical calculations on geometrical parameters, stabilization energies, and atomic charges based on natural bond orbital (NBO) analyses and then have compared with those of the neutral methylurea molecule. Our calculations have been done with the B3LYP method of density functional theory (DFT).  相似文献   

13.
The need for miniaturization and weight reduction of GPS patch antennas has prompted the search for new microwave dielectric materials. In this study, a sol–gel method was used to prepare Zn(1?x)MgxAl2O4 thin films and fabricate GPS patch antennas at a low annealing temperature (700 °C). X-ray diffraction (XRD) patterns, field emission scanning electron microscopy images, Fourier transform infrared spectra, and optical band gap analyses confirmed the nanostructure of (Mg/Zn)Al2O4. The XRD patterns displayed the characteristic peaks of (Mg/Zn)Al2O4 with a face-centered cubic structure. Mg addition decreased the crystallite size, surface morphology, and lattice parameters of the resultant films, evidently affecting their density and dielectric constant (? r ). Based on the material investigated and microwave antenna theory, GPS patch antennas were fabricated using Zn(1?x)MgxAl2O4 and then studied using a PNA series network analyzer. The fabricated patch antennas with different ? r ceramics decreased in size from 12.5 to 10.8 cm2. The patch antennas resonated at a frequency of 1.570 GHz and provided a return loss bandwidth between ?16.6 and ?20.0 dB; their bandwidth also improved from 90 to 255 MHz. The GPS patch antenna fabricated from Zn0.70Mg0.30Al2O4 showed an excellent combination of return loss (?20.0 dB), small size (10.8 cm2), and wide bandwidth (255 MHz). Therefore, addition of Mg improves antenna performance and decreases the dimensions of the device.  相似文献   

14.
Spinel Li4Mn5O12 nanoparticles are successfully prepared by water-in-oil microemulsion method and characterized by X-ray diffraction and scanning electron microscopy. The Li4Mn5O12 nanoparticles have sphere-like morphology with particle size less than 50 nm. The Li4Mn5O12 and activated carbon (AC) were used as electrodes of Li4Mn5O12/AC supercapacitor, respectively. The electrochemical capacitance performance of the supercapacitor was investigated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The results showed that the single electrode was able to deliver specific capacitance 252 F g?1 within potential range 0–1.4 V at a scan rate of 5 mV s?1 in 1 mol L?1 Li2SO4 solution, and it also showed high coulombic efficiency close to 100%. This material exhibited a good cycling performance.  相似文献   

15.
A yolk–shell-structured sphere composed of a superparamagnetic Fe3O4 core and a carbon shell (Fe3O4@HCS) was etched from Fe3O4@SiO2@carbon by NaOH, which was synthesized through the layer-by-layer coating of Fe3O4. This yolk–shell composite has a shell thickness of ca. 27 nm and a high specific surface area of 213.2 m2 g?1. Its performance for the magnetic removal of tetracycline hydrochloride from water was systematically examined. A high equilibrium adsorption capacity of ca. 49.0 mg g?1 was determined. Moreover, the adsorbent can be regenerated within 10 min through a photo-Fenton reaction. A stable adsorption capacity of 44.3 mg g?1 with a fluctuation <10% is preserved after 5 consecutive adsorption–degradation cycles, demonstrating its promising application potential in the decontamination of sewage water polluted by antibiotics.  相似文献   

16.
The electronic sensitivity and effectiveness of the pristine, Fe,- Mg-, Al- and Ga-doped ZnO nanoclusters interacted with 5-fluorouracil (5-FU) anticancer drug are theoretically investigated in the gas phase using the B3LYP/wB97XD density functional theory calculations with LANL2DZ basis set. It is concluded that 5-FU adsorption on the doped nanoclusters has relatively higher adsorption energy as compared with the pristine zinc oxide. A number of thermodynamic parameters, such as band gap energy (Eg), adsorption energy (Ead), molecular electrostatic potential, global hardness (η) and density of electronic states, are attained and compared. Also, calculated geometrical parameters and electronic properties for the studied systems indicate that Mg- and Ga-doped Zn12O12 present higher sensitivity to 5-FU compared with the pristine nanocluster. Theoretical results reveal that adsorption of 5-FU on the doped nanoclusters is influenced by the electronic conductance of the nanocluster. Therefore, Mg- and Ga-doped ZnO can be considered as promising nanobiosensors for detection of 5-FU in medicine.  相似文献   

17.
The complex formation between Zn2+, Cd2+ and Pb2+ ions with macrocyclic ligand, tetrathia12-crown-4 (12S4) was studied in dimethylsulfoxide (DMSO)–nitrobenzene binary mixtures at different temperatures using conductometric and 1H NMR methods. In all cases, 12S4 found to form 1:1 complexes with these cations. The formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the resulting molar conductance- and chemical shift-mole ratio data. There is an inverse relationship between the complex stability and the amount of DMSO in the solvent mixtures. The stability of the resulting M2+-12S4 complexes found to decrease in the order Pb2+ > Cd2+ > Zn2+. The values of ?H°, ?S° and ?G° for complexation reactions were evaluated from the temperature dependence of formation constants via van’t Hoff method. The obtained results revealed that, in all cases, the complexes are enthalpy stabilized, but entropy destabilized and the values of ?H° and ?S° are strongly depend on the nature of medium. There is also a linear relationship between all ΔH° and TΔS° values indicating the existence of entropy–enthalpy compensation in complexation of the three cations and ligand in the solvent systems studied.  相似文献   

18.
The electrochemical reduction of oxygen on binary Pt–Ru alloy deposited onto microporous–mesoporous carbon support was studied in 0.5 M H2SO4 solution using cyclic voltammetry, rotating disk electrode (RDE), and impedance method. The microporous–mesoporous carbon support C(Mo2C) with specific surface area of 1,990 m2?g?1 was prepared from Mo2C at 600 °C using the chlorination method. Analysis of X-ray diffraction, photoelectron spectroscopy, and high-resolution transmission electron microscopy data confirms that the Pt–Ru alloy has been formed and the atomic fraction of Ru in the alloy was ~0.5. High cathodic oxygen reduction current densities (?160 A?m?2 at 3,000 rev?min?1) have been measured by the RDE method. The O2 diffusion constant (1.9?±?0.3?×?10?5?cm2?s?1) and the number of electrons transferred per electroreduction of one O2 molecule (~4), calculated from the Levich and Koutecky–Levich plots, are in agreement with literature data. Similarly to the Ru/RuO2 system in H2SO4 aqueous solution, nearly capacitive behavior was observed from impedance data at very low ac frequencies, explained by slow electrical double-layer formation limited by the adsorption of reaction intermediates and products into microporous–mesoporous Pt–Ru–C(Mo2C) catalyst. All results obtained for C(Mo2C) and Pt–Ru–C(Mo2C) electrodes have been compared with corresponding data for commercial carbon VULCAN® XC72 (C(Vulcan)) and Pt–Ru–C(Vulcan) electrodes processed and measured in the same experimental conditions. Higher activity for C(Mo2C) and Pt–Ru–C(Mo2C) has been demonstrated.  相似文献   

19.
Three new supramolecular compounds based on Keggin-type polyoxometalate (POM) and transition metal complexes, [M(Hapca)2(H2O)2]2[SiW12O40]·nH2O, (M = NiII(1), ZnII(2), n = 12; CoII (3), n = 15; Hapca = 3-aminopyrazine-2-carboxylic acid), have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analysis, TG analyses, IR and fluorescence spectroscopy. The X-ray structrual analysis reveals that three compounds are isostructural with a P21/c space group. [M(Hapca)2(H2O)2] 2 4+ are linked together via O···N hydrogen-bonding interaction to give birth to 2D layer with rectangle grids. Anions [SiW12O40]4? are located in the cavities and link the 2D layers into 3D supramolecular architecture via hydrogen bonds. The compounds represent the first examples of self-assembly of 2D metal–Hapca complex supramolecular “host” networks formed by hydrogen bonding interactions and “guest” polyoxoanion species. In addition, solid-state luminescence properties of compounds 2 and 3 have been studied at room temperature.  相似文献   

20.
This paper assesses the adsorption characteristics of Titan yellow and Congo red on CoFe2O4 magnetic nanoparticles. The adsorption behavior of Titan yellow and Congo red from aqueous solution onto CoFe2O4 magnetic nanoparticles has been determined by investigating the effects of pH, concentration of the dye, amount of adsorbent, contact time, ionic strength and temperature. Experimental results indicated that CoFe2O4 nanoparticles can remove more than 98 % of each dye under optimum operational conditions of a dosage of 15.0 mg CoFe2O4, pH 3.0, initial dye concentration of 22–140 mg L?1, and contact times of 2.0 and 15.0 min for Congo red and Titan yellow, respectively. Langmuir and Freundlich isotherm models have been used to evaluate the ongoing adsorption kinetic equations. Regeneration of the saturated adsorbent was possible by NaCl/acetone solution as eluent. The maximum adsorption capacities were 200.0 and 212.8 mg dye per gram adsorbent for Congo red and Titan yellow, respectively. With the help of adsorption isotherm, thermodynamic parameters such as free energy, enthalpy and entropy have been calculated. On the basis of pseudo-first-order and pseudo-second-order kinetic equations, different kinetic parameters have been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号