首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Intelligent feedback release systems, consisting of radiation-prepared porous polycarbonate film or silicone chip and radiation crosslinked stimuli-sensitive hydrogels with immobilized enzymes as a sensor–actuator gate were constructed. Those systems showed various signal responsive substance release functions, and selective signal transfer functions. The application of those integrated intelligent systems as neural network model was investigated.  相似文献   

2.

Synchrotron radiation techniques (μ-XRF and μ-XANES) were applied to the study of organic-rich phosphatized limestones of NW Greece (Epirus). The results revealed uranium accumulation in areas of the material containing, among others, carbonate apatite (francolite) and organic matter. The UL 3-edge of μ-XANES spectra showed that uranium was present in tetravalent form. U-bearing francolite crystals were separated from the rock and characterized by Raman spectroscopy and microprobe. The analysis of the crystals also indicated the presence of sodium and sulfur. The uranium presence in the crystals was also visualized, after neutron irradiation and etching, by the observation of the fission tracks.

  相似文献   

3.
Porous silica microspheres were fabricated by a facile surface-protected etching strategy. Polyvinylpyrrolidone (PVP) was used as a protecting polymer absorbed on the surface of silica microspheres and NaOH was employed as an etching agent. Owing to the protective action of PVP and inhomogeneous etching, mesopores were created in the silica microspheres. Then, based on the Pechini-type sol-gel and impregnating process, YVO(4):Eu(3+) nanocrystals were integrated into the channels to form highly luminescent YVO(4):Eu(3+)@SiO(2) composite microspheres. The biocompatibility tests on L929 fibroblast cells using MTT assay reveal low cytotoxicity of the system. Owing to the large interior space and electrostatic interaction, the porous microspheres show a relatively high loading capacity (438 mg DOX/YVO(4):Eu(3+)@SiO(2) g) and encapsulation efficiency (87.6%) for the anti-cancer drug doxorubicin hydrochloride (DOX). The drug release behavior and cytotoxic effect against human cervical carcinoma cells (HeLa cells) of the DOX-loaded YVO(4):Eu(3+)@SiO(2) carriers were investigated in vitro. It was found that the carriers present a highly pH-dependent drug release behavior due to electrostatic interaction between the silica surface and DOX molecules. The drug release rate became greater at low pH owing to the increased electrostatic repulsion. The DOX-loaded carriers demonstrate a similar or even greater anti-cancer activity with respect to the free DOX against HeLa cells. Furthermore, the PL intensity of the microspheres shows correlation with the cumulative release of DOX. These results suggest that the composite can potentially act as a multifunctional drug carrier system with luminescent tagging and pH-controlled release properties.  相似文献   

4.
Intelligent membranes for pH and temperature-responsive drug releases were developed by coating and curing of polymer-drug composite film with electrolyte or N-isopropyl acrylamide curable mixture. It was proved that those intelligent membranes showed the stimule-sensitive and responsive release functions and could be produced efficiently by radiation curing prosessing with a conveyer system.  相似文献   

5.
Hollow mesoporous silica(HM-SiO2) was prepared by the improved stober method. On this basis, HM-SiO2 was dispersed in an alkaline solution for surface etching. Meanwhile, calcium source was introduced to combine with on the surface to form a CaSiO3shell layer and an unprecedent SiO2@CaSiO3sphere with a hollow double-shell structure was obtained. The as-synthesized SiO2@CaSiO3 was characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), N2-BET, IR and UV-Vis techniques, and its sustained release capacity of doxorubicin(DOX) loading was investigated. The drug loading capacity can be achieved to 0.692 mg DOX/mg SiO2@CaSiO3, exhibiting pH-responsivity under low pH conditions.  相似文献   

6.
Nitrogen-doped carbon nanotubes(NCNTs) were synthesized by chemical vapor deposition using cobaltbased oxides as catalyst and ethylenediamine(EDA) as carbon/nitrogen precursor. The influence of growth time,EDA concentration and growth temperature on the morphology,yield,composition,graphitization and oxidation resistance of the NCNTs was systematically investigated by using Raman spectroscopy,temperature-programmed oxidation and other techniques. The NCNT growth from ethylenediamine with a high N/C ratio involves several processes including mainly(1) catalytic growth of NCNTs,(2) homogeneous gas-phase decomposition of EDA,(3) non-catalytic deposition of pyrolytic carbon/nitrogen species and(4)surface etching of amorphous carbon or carbon at defect sites through gasification. At a later growth stage the etching process appears to be dominating,leading to the thinning of nanotubes and the decrease of yield.Moreover,the surface etching through carbon gasification strongly influences the structure and degree of graphitization of NCNTs.  相似文献   

7.
The mechanism of gallium arsenide etching in a chlorine-argon plasma was studied. The absorption-desorption model was proposed which explains an increase in etching rate upon chlorine dilution with argon by enhancement of the efficiency of active site cleaning with plasma UV radiation and ion fluxes. The processes of desorption of etching products from the surface by ions and UV photons were shown to be energetically favored. The amount of active sites cleaned per ion or photon was calculated. The addition of argon was assumed to change the proportion of active sites. Procedures for calculating fluxes of reactive species onto the surface and the probability of ultraviolet light and ion-induced desorption were detailed.  相似文献   

8.
The integration technology of hydrogen preparation–hydrogen storage not only can utilize hydrogen energy efficiently but also can improve the selectivity of the electrode maximally. In the present work, the structure and composition of the PtNi catalyst was characterized by X-ray diffraction (XRD); and its electrochemical properties, morphology, and surface binding energy were analyzed by cyclic voltammetry (CV) and linear scanning voltammetry (LSV), scanning electron microscopy equipped with energy-dispersive spectrometry (SEM-EDS), and X-ray photoelectron spectroscopy (XPS), respectively. The effects of different acid etching treatments (e.g., etching time, etchant concentration, and etching temperature) on the structure and surface active sites were investigated by the orthogonal experiment. The experimental results reveal that after etching with 0.5 mol/L of perchloric acid for 0.5 h at 60°C, the electrode weight loss of the PtNi catalyst is mainly attributed to the large loss of Ni atoms in film layer. This results in the reduced alloy phase in film layer and the appearance of Pt characteristic diffraction peak. The relative content of Pt on the surface of the film electrode increases significantly, and the total number of active sites also increases correspondingly. The binding energy of Pt4f7/2 decreases by 0.19 eV, and the number of active sites involved in hydrogen release decreases, indicative of the reduced promotion effect of the PtNi catalyst on hydrogen release.  相似文献   

9.
Based on a survey of the literature on pretreatment of fused silica capillaries, 3 etching procedures and 11 silanization protocols based on the vinylic silane 3-((trimethoxysilyl)propyl) methacrylate (gamma-MAPS) were found to be most representative as a means of ensuring attachment of in situ prepared vinylic polymers. These techniques were applied to fused silica capillaries and the success in establishing the intended surface modification was assessed. X-ray photoelectron spectroscopy (XPS) was used to characterize the chemical state of the surface, providing information regarding presence of the reagent bound to the capillary. Wetting angles were measured and correlated with the XPS results. An adherence test was done by photopolymerization of a 2 mm long plug of 1,6-butanediol dimethacrylate in the prepared capillaries and evaluation of its ability to withstand applied hydraulic pressure. SEM was also performed in cases where the plug was released or other irregularities were observed. Finally, the roughness of the etched surface, considered to be of importance, was assessed by atomic force microscopy. Alkaline etching at elevated temperature provided a surface roughness promoting adhesion. The commonly used silanization protocols involving water in the silanization or washing steps gave inadequate surface treatment. The best silanization procedure was based on toluene as a solvent.  相似文献   

10.
The effect of electron beam and gamma radiation on the physicochemical properties of a salicylate-based poly(anhydride-ester) was studied by exposing polymers to 0 (control), 25 and 50 kGy. After radiation exposure, salicylic acid release in vitro was monitored to assess any changes in drug release profiles. Molecular weight, glass transition temperature and decomposition temperature were evaluated for polymer chain scission and/or crosslinking as well as changes in thermal properties. Proton nuclear magnetic resonance and infrared spectroscopies were also used to determine polymer degradation and/or chain scission. In vitro cell studies were performed to identify cytocompatibility following radiation exposure. These studies demonstrate that the physicochemical properties of the polymer are not substantially affected by exposure to electron beam and gamma radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号