首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ten copper(II) complexes {[CuL1Cl] (1), [CuL1NO3]2 (2), [CuL1N3]2 · 2/3H2O (3), [CuL1]2(ClO4)2 · 2H2O (4), [CuL2Cl]2 (5), [CuL2N3] (6), [Cu(HL2)SO4]2 · 4H2O (7), [Cu(HL2)2] (ClO4)2 · 1/2EtOH (8), [CuL3Cl]2 (9), [CuL3NCS] · 1/2H2O (10)} of three NNS donor thiosemicarbazone ligands {pyridine-2-carbaldehyde-N(4)-p-methoxyphenyl thiosemicarbazone [HL1], pyridine-2-carbaldehyde-N(4)-2-phenethyl thiosemicarbazone [HL2] and pyridine-2-carbaldehyde N(4)-(methyl), N(4)-(phenyl) thiosemicarbazone [HL3]} were synthesized and physico-chemically characterized. The crystal structure of compound 9 has been determined by X-ray diffraction studies and is found that the dimer consists of two square pyramidal Cu(II) centers linked by two chlorine atoms.  相似文献   

2.
Two structurally different complexes, [Cu2(2-NO2Bz)4(denia)1]n (1) and [Cu(2-NO2Bz)2(denia)2(H2O)2] (2), were prepared from the same reaction (where 2-NO2Bz = 2-nitrobenzoate, denia = N,N-diethylnicotinamide) and they are reported together with [Cu2(2-NO2Bz)4(DMF)2] (3) (DMF = N,N-dimethylformamide). The compounds under study were characterized by elemental analysis, electronic, IR and EPR spectra, magnetic measurements over the temperature range of 1.8–300 K and X-ray analysis. The molecular structure of (1) is polymeric, (2) is monomeric and (3) is dimeric. In the polymeric chain of (1), the denia molecules serve as bridges between dimeric Cu2(2-NO2bz)4 units. Each Cu(II) atom has a square-pyramidal arrangement with different chromophores, Cu1O4O′ and Cu2O4N. The Cu–Cu distances are 2.699(1) Å in the dimeric unit and 7.980(3) Å between the dimeric units. In (2) the Cu(II) atom has a tetragonal-bipyramidal environment CuO2N2O′2. In (3) two Cu(II) atoms are bridged by four carboxylate groups of four 2-NO2bz anions in a synsyn arrangement which create a square base about each Cu(II) atom and an apical position is occupied by the O atom of a DMF molecule (CuO4O′). The Cu–Cu distance of 2.633(1) Å is somewhat shorter than in (1). Spectral and magnetic data of the complexes are discussed with their structures.  相似文献   

3.
A series of new asymmetrically N-substituted derivatives of the 1,4,7-triazacyclononane (tacn) macrocycle have been prepared from the common precursor 1,4,7-triazatricyclo[5.2.1.04,10]decane: 1-ethyl-4-isopropyl-1,4,7-triazacyclononane (L1), 1-isopropyl-4-propyl-1,4,7-triazacyclononane (L2), 1-(3-aminopropyl)-4-benzyl-7-isopropyl-1,4,7-triazacyclononane (L3), 1-benzyl-4-isopropyl-1,4,7-triazacyclononane (L4) and 1,4-bis(3-aminopropyl)-7-isopropyl-1,4,7-triazacyclononane (L5). The corresponding monomeric copper(II) complexes were synthesised and were found to be of composition: [Cu(L1)Cl2] · 1/2 H2O (C1), [Cu(L4)Cl2] · 4H2O (C2), [Cu(L3)(MeCN)](ClO4)2 (C3), [Cu(L5)](ClO4)2 · MeCN · NaClO4 (C4) and [Cu(L2)Cl2] · 1/2 H2O (C5). The X-ray crystal structures of each complex revealed a distorted square-pyramidal copper(II) geometry, with the nitrogen donors on the ligands occupying 3 (C1 and C2), 4 (C3) or 5 (C4) coordination sites on the Cu(II) centre. The metal complexes were tested for the ability to hydrolytically cleave phosphate esters at near physiological conditions, using the model phosphodiester, bis(p-nitrophenyl)phosphate (BNPP). The observed rate constants for BNPP cleavage followed the order kC1 ≈ kC2 > kC5 ? kC3 > kC4, confirming that tacn-type Cu(II) complexes efficiently accelerate phosphate ester hydrolysis by being able to bind phosphate esters and also form the nucleophile necessary to carry out intramolecular cleavage. Complexes C1 and C2, featuring asymmetrically disubstituted ligands, exhibited rate constants of the same order of magnitude as those reported for the Cu(II) complexes of symmetrically tri-N-alkylated tacn ligands (k ∼ 1.5 × 10−5 s−1).  相似文献   

4.
MgMe2 (1) was found to react with 1,4-diazabicyclo[2.2.2]octane (dabco) in tetrahydrofuran (thf) yielding a binuclear complex [{MgMe2(thf)}2(μ-dabco)] (2). Furthermore, from reactions of MgMeBr with diglyme (diethylene glycol dimethyl ether), NEt3, and tmeda (N,N,N′,N′-tetramethylethylenediamine) in etheral solvents compounds MgMeBr(L), (L = diglyme (5); NEt3 (6); tmeda (7)) were obtained as highly air- and moisture-sensitive white powders. From a thf solution of 7 crystals of [MgMeBr(thf)(tmeda)] (8) were obtained. Reactions of MgMeBr with pmdta (N,N,N′,N″,N″-pentamethyldiethylenetriamine) in thf resulted in formation of [MgMeBr(pmdta)] (9) in nearly quantitative yield. On the other hand, the same reaction in diethyl ether gave MgMeBr(pmdta) · MgBr2(pmdta) (10) and [{MgMe2(pmdta)}7{MgMeBr(pmdta)}] (11) in 24% and 2% yield, respectively, as well as [MgMe2(pmdta)] (12) as colorless needle-like crystals in about 26% yield. The synthesized methylmagnesium compounds were characterized by microanalysis and 1H and 13C NMR spectroscopy. The coordination-induced shifts of the 1H and 13C nuclei of the ligands are small; the largest ones were found in the tmeda and pmdta complexes. Single-crystal X-ray diffraction analyses revealed in 2 a tetrahedral environment of the Mg atoms with a bridging dabco ligand and in 8 a trigonal-bipyramidal coordination of the Mg atom. The single-crystal X-ray diffraction analyses of [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) showed them to be monomeric with five-coordinate Mg atoms. The square-pyramidal coordination polyhedra are built up of three N and two C atoms in 12 and three N and two Br atoms in 13. The apical positions are occupied by methyl and bromo ligands, respectively. Temperature-dependent 1H NMR spectroscopic measurements (from 27 to −80 °C) of methylmagnesium bromide complexes MgMeBr(L) (L = thf (4); diglyme (5); NEt3 (6); tmeda (7)) in thf-d8 solutions indicated that the deeper the temperature the more the Schlenk equilibria are shifted to the dimethylmagnesium/dibromomagnesium species. Furthermore, at −80 °C the dimethylmagnesium compounds are predominant in the solutions of Grignard compounds 4-6 whereas in the case of the tmeda complex7 the equilibrium constant was roughly estimated to be 0.25. In contrast, [MgMeBr(pmdta)] (9) in thf-d8 revealed no dismutation into [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) even up to −100 °C. In accordance with this unexpected behavior, 1:1 mixtures of 12 and 13 were found to react in thf at room temperature yielding quantitatively the corresponding Grignard compound 9. Moreover, the structures of [MgMeBr(pmdta)] (9c), [MgMe2(pmdta)] (12c), and [MgBr2(pmdta)] (13c) were calculated on the DFT level of theory. The calculated structures 12c and 13c are in a good agreement with the experimentally observed structures 12 and 13. The equilibrium constant of the Schlenk equilibrium (2 9c ? 12c + 13c) was calculated to be Kgas = 2.0 × 10−3 (298 K) in the gas phase. Considering the solvent effects of both thf and diethyl ether using a polarized continuum model (PCM) the corresponding equilibrium constants were calculated to be Kthf = 1.2 × 10−3 and Kether = 3.2 × 10−3 (298 K), respectively.  相似文献   

5.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 13 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 14 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions.  相似文献   

6.
Nickel(II) complexes of quinoline-2-carbaldehyde N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL1) and 2-benzoylpyridine N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL2) have been synthesized and physico-chemically characterized by means of partial elemental analyses, molar conductance measurements, magnetic measurements, electronic and infrared spectral studies. Three complexes were given the formulae [Ni(HL1)2]Cl2 (1), [Ni(HL2)L2]ClO4 · 7H2O (2) and [NiL2Cl] · 0.5H2O (3). The structure of compound 1 has been solved by single crystal X-ray crystallography and is found to be distorted octahedral. Compound 2, when crystallized in DMSO solution, got deprotonated to form a new compound [Ni(L2)2] (2a), with a distorted octahedral Ni(II) center. In compound 1, HL1 coordinates to the metal in the thione form, while in compounds 2a and 3, HL2 coordinates in its deprotonated thiolate form.  相似文献   

7.
The reaction of sodium dimethyl(phenylsulfonyl)amidophosphate NaL (HL = C6H5SO2NHP(O)(OCH3)2) with Cu(NO3)2 · 6H2O and o-bpe (1,2-bis(pyridine-2-yl)ethane) in appropriate ratios, afford the formation of 1D coordination polymer [Cu(L)2 · o-bpe]n in good yield. The crystal structures of HL (1) and [Cu(L)2 · o-bpe]n (2) are reported. In the crystal package the molecules of 1 are linked by intermolecular hydrogen bonds formed by the phosphoryl oxygen atoms which serve as acceptors and nitrogen atoms of amide groups as donors. The crystal structure of 2 indicates the presence of unsaturated Cu(L)2 unit bridged by o-bpe ligand in the one-dimensional polymeric chain. The Cu(II) atoms have distorted 4 + 2 octahedral CuO4N2 environment formed by the oxygen atoms belonging to the sulfonyl and phosphoryl groups of two deprotonated chelate ligands and nitrogen atoms of the bridging o-bpe ligands.  相似文献   

8.
Two new dinuclear copper compounds, [Cu2(pypz)2(N3)2(NO3)2] (1) and [Cu2(pypz)2(OH)2(NO3)2] (2), and one 1-D polymeric Cu(II) complex, [Cu(pypz)(dca)3]n (3) [‘pypz’ = (3,5dimethyl-1-(2′-pyridyl)pyrazole) and dca = (dicyanamide)], have been synthesized and characterized crystallographically and spectroscopically. Complex 1 is pseudo-octahedral, adjacent Cu atoms are connected by a pair of μ(1,1) azido groups and the structure is stabilized by π-π interactions between two pyridyl moieties from two different neighboring complex molecules. Complexes 2 and 3 are square pyramidal. The hydroxo bridged complex 2 is further stabilized through H-bonding. The 1-D polymeric chain of 3 is bridged by an end-to-end dicyanamide bridge and it propagates along the crystallographic b axis, whilst the polymer chains are stacked one upon another along the crystallographic c axis. Low temperature magnetic measurement shows that complexes 1 and 2 are ferromagnetic (J values are 30.81 and 14.79 cm−1, respectively), whereas due to larger Cu-Cu distances, complex 3 shows weak ferromagnetism.  相似文献   

9.
Four manganese(II) complexes of di-2-pyridyl ketone N(4)-methyl (HDpyMeTsc) and N(4)-ethyl thiosemicarbazones (HDpyETsc) were synthesized and physico-chemically characterized by means of partial elemental analyses, molar conductance measurements, electronic, infrared and EPR spectral studies. The complexes are represented as [Mn(DpyMeTsc)2] (1), [Mn(HDpyMeTsc)Cl2] (2), [Mn(HDpyMeTsc)2](ClO4)2 · H2O (3) and [Mn(DpyETsc)2] · 2H2O (4). The crystal structure of [Mn(DpyMeTsc)2] was established by single crystal X-ray diffraction studies. The compound crystallizes into a monoclinic lattice with P21/n space group. Manganese(II) exists in a distorted octahedral geometry in the complex.  相似文献   

10.
The syntheses of the compounds [M(Cp)(aeaz)(az)](OTf)2 (4, 5) (M = Rh(III), Ir(III); aeaz = C2H4NC2H4NH2, az = C2H4NH (3)) containing cationic N-(2-aminoethyl)aziridine-N,N′ chelate complexes are described. The bis-aziridine complexes [MCl(Cp)(az)2]Cl (M = Rh (1), M = Ir (2)) react with an excess of the aziridine (az) in the presence of AgO3SCF3 (=AgOTf) via AgCl precipitation and az addition followed by a metal-mediated coupling reaction, to give the compounds [M(Cp)(aeaz)(az)](OTf)2 (4, 5). The new aeaz ligand is formally the dimerisation product of az. Using the same reaction conditions with the analogous, but weaker Lewis acidic ruthenium(II) complex [RuCl(C6Me6)(az)2]Cl (6) an anion exchange reaction yielding [RuCl(C6Me6)(az)2]OTf (8) is observed. After purification, all compounds are fully characterized using IR, FAB-MS, 1H and 13C NMR spectroscopy. The single crystal X-ray structure analysis reveals a distorted octahedral geometry for all complexes.  相似文献   

11.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

12.
Two coordination compounds of palladium(II) with N-allylimidazole (l) of the general formula [PdL4]Cl2 · 3H2O (1) and trans-[PdL2Cl2] (2) have been synthesized. The crystal and molecular structure of complexes 1 and 2 was established by single-crystal X-ray diffraction analysis. The X-ray structural data were supplemented by solid-state 13C NMR measurements (CP MAS and PASS 2D). The 1D and 2D NMR studies in solution reveal that complex 1 is unstable at room temperature and undergoes reversible decomposition to 2. The method for how to preserve a complex with four allyl-imidazole ligands in solution is shown.  相似文献   

13.
The syntheses and crystal structures of four new uranyl complexes with [O,N,O,N′]-type ligands are described. The reaction between uranyl nitrate hexahydrate and the phenolic ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-N′,N′-dimethylethylenediamine)], H2L1 in a 1:2 molar ratio (M to L), yields a uranyl complex with the formula [UO2(HL1)(NO3)] · CH3CN (1). In the presence of a base (triethylamine, one mole per ligand mole) with the same molar ratio, the uranyl complex [UO2(HL1)2] (2) is formed. The reaction between uranyl nitrate hexahydrate and the ligand [(N,N-bis(2-hydroxy-3,5-di-t-butylbenzyl)-N′,N′-dimethylethylenediamine)], H2L2, yields a uranyl complex with the formula [UO2(HL2)(NO3)] · 2CH3CN (3) and the ligand [N-(2-pyridylmethyl)-N,N-bis(2-hydroxy-3,5-dimethylbenzyl)amine], H2L3, in the presence of a base yields a uranyl complex with the formula [UO2(HL3)2] · 2CH3CN (4). The molecular structures of 14 were verified by X-ray crystallography. The complexes 14 are zwitter ions with a neutral net charge. Compounds 1 and 3 are rare neutral mononuclear [UO2(HLn)(NO3)] complexes with the nitrate bonded in η2-fashion to the uranyl ion. Furthermore, the ability of the ligands H2L1–H2L4 to extract the uranyl ion from water to dichloromethane, and the selectivity of extraction with ligands H2L1, H3L5 (N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-3-amino-1-propanol), H2L6 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminobutane · HCl) and H3L7 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol · HCl) under varied chemical conditions were studied. As a result, the most efficient and selective ligand for uranyl ion extraction proved to be H3L7 · HCl.  相似文献   

14.
Three novel Cu(II)-pyrazine-2,3-dicarboxylate complexes with 1,3-propanediamine (pen), [Cu2(μ-pzdc)2(pen)2] · 2H2O (1), N,N,N,N′-tetramethylethylenediamine (tmen), {[Cu(μ-pzdc)(tmen)] · H2O}n(2), and 2,2′-bipyridine (bipy), {[Cu(μ-pzdc)(bipy)]·H2O}n(3) have been synthesized and characterized by means of elemental and thermal analyses, magnetic susceptibilities, IR and UV/vis spectroscopic studies. The molecular structures of dinuclear (1) and polynuclear (2 and 3) complexes have been determined by the single crystal X-ray diffraction technique. The pyrazine-2,3-dicarboxylate acts as a bridging ligand through oxygen atom of carboxylate group and N atom of pyrazine ring and one oxygen atom of neighboring carboxylate. It links the Cu(II) ions to generate a distorted square pyramidal geometry forming a one-dimensional (1D) chain. Adjacent chains of 1 and 2 are then mutually linked via hydrogen bonding interactions, which are further assembled to form a two and three-dimensional network, respectively. The chains of complex 3 are further constructed to form three-dimensional framework by hydrogen bonding, C–H?π and ring?ring stacking interactions. In the complexes, Cu(II) ions have distorted square pyramidal geometry. Thermal analyses properties and thermal decomposition mechanism of complexes have been investigated by using thermal analyses techniques (TG, DTG and DTA).  相似文献   

15.
A series of novel octahedral nickel(II) dithiocarbamate complexes involving bidentate nitrogen-donor ligands (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) or a tetradentate ligand (cyclam = 1,4,8,11-tetraazacycloteradecane) of the composition [Ni(BzMetdtc)(phen)2]ClO4 (1), [Ni(Pe2dtc)(phen)2]ClO4 (2), [Ni(Bzppzdtc)(phen)2]ClO4 · CHCl3 (3), [Ni(Bzppzdtc)(phen)2](SCN) (4), [Ni(BzMetdtc)(bpy)2]ClO4 · 2H2O (5), [Ni(Pe2dtc)(cyclam)]ClO4 (6), [Ni(BzMetdtc)2(cyclam)] (7), [Ni(Bz2dtc)2(cyclam)] (8) and [Ni(Bz2dtc)2(phen)] (9) (BzMetdtc = N,N-benzyl-methyldithiocarbamate(1-) anion, Pe2dtc = N,N-dipentyldithiocarbamate(1-) anion, Bz2dtc = N,N-dibenzyldithiocarbamate(1-) anion, Bzppzdtc = 4-benzylpiperazinedithiocarbamate(1-) anion), have been synthesized. Spectroscopic (electronic and infrared), magnetic moment and molar conductivity data, and thermal behaviour of the complexes are discussed. Single crystal X-ray analysis of 3 and 8 confirmed a distorted octahedral arrangement in the vicinity of the nickel atom with a N4S2 donor set. They represent the first X-ray structures of such type complexes. The catalytic influence of complexes 2, 3, 6, and 7 on graphite oxidation was studied and discussed.  相似文献   

16.
Five novel coordination polymers, [Co(bpb)2Cl2] (1), [Co(bpb)2(SCN)2] (2), [Cd(H4bpb)0.5(dmf)(NO3)2] (3), [Cd2(H4bpb)Br4] (4), and [Hg2(H4bpb)I4] (5) [bpb=N,N′-bis(3-pyridylmethyl)-1,4-benzenedimethyleneimine, H4bpb=N,N′-bis(3-pyridylmethyl)-1,4-benzenedimethylamine], were synthesized and their structures were determined by X-ray crystallography. In the solid state, complex 1 is a 1D hinged chain, while 2 has 2D network structure with the ligand bpb serving as a bridging ligand using its two pyridyl N atoms. The imine N atoms keep free of coordination and bpb acts as a bidentate ligand in both 1 and 2. Complexes 3, 4, and 5 with reduced bpb ligand, i.e. H4bpb, show similar 2D network structure, in which ligand H4bpb serves as a tetradentate ligand. Thermogravimetric analyses for complexes 1-5 were carried out and found that they have high thermal stability. The magnetic susceptibilities of compounds 1, 2 were measured over a temperature range of 75-300 K.  相似文献   

17.
Violet (1) and blue (2) polymorphous modifications of [Cu(men)2Pt(CN)4]n (men = N-methyl-1,2-diaminoethane) have been prepared and investigated by IR and UV-vis spectroscopy, thermal analysis, measurement of magnetic data and X-ray structural analysis. Both modifications are formed by similar but differently packed zigzag chains, which consist of [Cu(men)2]2+ moieties bridged by two trans arranged cyanido groups of [Pt(CN)4]2− units. The Cu(II) atoms in both structures are hexacoordinated by four nitrogen atoms in the equatorial plane from two molecules of bidentate men ligands with the average Cu-N(Me) and Cu-N(H2) bond lengths of 2.046(8) and 2.008(8) Å, respectively, and by two nitrogen atoms from bridging cyanido groups in the axial positions at average distance of 2.50(7) Å. Broad nearly symmetric bands observed in the UV-vis spectra of 1 and 2 of 2B1g → 2Eg transitions are consistent with a deformed octahedral coordination of the CuN6 chromophoric groups. One and two ν(CN) absorption bands observed in the IR spectra of 1 and 2, respectively, are in agreement with different local symmetries of [Pt(CN)4]2− units and different Cu-N(cyanido) bond lengths in these polymorphs and are subject of discussion on the spectral-structural correlations in 1D compounds. The complexes are stable up to 238 °C when their two-stage thermal decompositions start and ending up with a mixture of CuO and metallic Pt as the most probable final thermal decomposition products. The temperature dependence of the magnetic susceptibility suggests the presence of a weak antiferromagnetic exchange coupling between Cu(II) atoms in 1, J/hc = −0.17 cm−1 and in 2, J/hc = −1.3 cm−1.  相似文献   

18.
[Cu(H2L)(PPh3)2]NO3 · 0.5H2O (2) and [Ag(H2L)(PPh3)2]NO3 · 0.5H2O (3) complexes of a new flexible thioamide ligand; N,N′-ethane-1,2-bis(4-methoxyphenyl)carbothioamide H2L (1) have been synthesized using PPh3 as a coligand. The synthesized compounds have been characterized with the help of elemental analyses, IR, 1H, 13C and 31P NMR spectroscopy. The ligand and its Cu(I) complex have been studied by single crystal X-ray crystallography. The ligand acts as a neutral S-donor and forms a nine-membered chelate ring in [Cu(H2L)(PPh3)2]NO3 · 0.5H2O. The molecular packing is stabilized by an anionic cavity formed by intermolecular hydrogen bonding between the basal plane of the complex molecule and the nitrate ions. The square shaped columnar channel has dimensions of 5.489(25) [N(11)–H(11A)?O(13)?H(21A)N(21)] × 3.693(7) [N(11)–C(11)–C(21)–N(21)] Å.  相似文献   

19.
Three new N,S-donor bidentate pyrazolyl-based ligands abbreviated as [PhNCSPz], 1, [PhNCSPzMe2], 2, and [PhNCSPzPh2], 3, have been synthesized in THF by direct mixing of phenylisothiocyanide with suspension of appropriate sodium-pyrazolate salts and characterized by the common spectroscopic and analytical methods. The Cu(II) complexes of these anionic chelate ligands have been characterized and the crystal structure of Cu(PhNCSPz)2, 4, has been determined. The space group of complex is P21c, with a = 5.9313(3), b = 21.206(1) Å, c = 8.0667(4) Å, β = 103.822(1)°.  相似文献   

20.
Tetra-ether substituted imidazolium salts, LHX (where LH = N,N′-bis(2,2-diethoxyethyl)imidazolium cation and X = Br, BF4, PF6, BPh4, NO3 and NTf2 anions) were derived from imidazole. Attempts to produce aldehyde functionalized imidazolium salt through acid hydrolysis of LHBr resulted an unexpected tetra-hydroxy compound LAHBr and the dialdehyde compound LBHBr. Reaction of LHBr with Ag2O afforded [L2Ag][AgBr2] (1). Mononuclear Pd-complex trans-[L2PdCl2] (2) and dinuclear Pd-complex [(LPdCl2)2] (3) were obtained by 1:1 and 1:2 reaction of in situ generated Ag-carbene with Pd(CH3CN)2Cl2. cis-[LPdPPh3Cl2] (4) was synthesized from reaction of PPh3 with dinuclear complex 3. Hydrolysis of 3 under acidic conditions also generates a hydroxy derivative 3A and the aldehyde derivative 3B. Direct heating of LHBr with Ni(OAc)2 · 4H2O at 120 °C under vacuum generated trans-[L2NiBr2] (5). These complexes were characterized by NMR, mass, elemental analysis, and X-ray single crystal diffraction analysis. Pd--Pd interaction was observed in 3. All the Pd complexes exhibited excellent catalytic activity in Heck reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号