首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A simple and rapid liquid chromatography–mass spectrometry (LC‐MS) method was developed and validated for analysis of ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, icariin and epimedin A, B, C in rat target tissues (spinal cord, brain, muscle and sciatic nerve) after intravenous administration of Jiweiling freeze‐dried powder using genistein as an internal standard (IS). The tissue samples were treated by protein precipitation with methanol prior to HPLC and chromatographic separation was performed on a C18 column utilizing a gradient elution program with acetonitrile and 0.1% formic acid aqueous. Electrospray ionization (ESI) source was employed and the 11 analytes and IS were detected by multiple reaction monitoring (MRM) scanning under the negative ionization mode. Higher sensitivity was achieved and the optimized mass transition ion‐pairs (m/z) for quantitation were selected. The calibration curves were linear over the investigated concentration ranges with correlation coefficients higher than 0.995. The intra‐ and inter‐day RSDs were all less than 10% with the relative error (RE) within ±9.3%. The mean extraction recoveries for all compounds were between 93.3 and 106%. The proposed method was successfully applied to investigate the target tissue distribution of the 11 compounds in rat after intravenous administration of Jiweiling freeze‐dried powder. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A fast, sensitive and reliable ultra fast liquid chromatography‐tandem mass spectrometry (UFLC‐MS/MS) method has been developed and validated for simultaneous quantitation of polygalaxanthone III (POL), ginsenoside Rb1 (GRb1), ginsenoside Rd (GRd), ginsenoside Re (GRe), ginsenoside Rg1 (GRg1) and tumulosic acid (TUM) in rat plasma after oral administration of Kai‐Xin‐San, which plays an important role for the treatment of Alzheimer's disease (AD). The plasma samples were extracted by liquid–liquid extraction using ethyl acetate–isopropanol (1:1, v/v) with salidrdoside as internal standard (IS). Good chromatographic separation was achieved using gradient elution with the mobile phase consisting of methanol and 0.01% acetic acid in water. The tandem mass spectrometric detection was performed in multiple reaction monitoring mode on 4000Q UFLC‐MS/MS system with turbo ion spray source in a negative and positive switching ionization mode. The lower limits of quantification were 0.2–1.5 ng/ml for all the analytes. Both intra‐day and inter‐day precision and accuracy of analytes were well within acceptance criteria (±15%). The mean absolute extraction recoveries of analytes and IS from rat plasma were all more than 60.0%. The validated method has been successfully applied to comparing pharmacokinetic profiles of analytes in normal and AD rat plasma. The results indicated that no significant differences in pharmacokinetic parameters of GRe, GRg1 and TUM were observed between the two groups, while the absorption of POL and GRd in AD group were significantly higher than those in normal group; moreover, the GRb1 absorbed more rapidly in model group. The different characters of pharmacokinetics might be caused by pharmacological effects of the analytes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Ginsenosides Rgl, Re, Rb1, Rc, Rb2, Rb3, and Rd in different parts of the American ginseng plant were investigated. The extraction process was a pressurized microwave-assisted extraction(PMAE). The seven ginsenosides were separated and determined by high-performance liquid chromatography(HPLC) with a ultraviolet(UV) detector, at 203 nm. The experiment results showed significant variations in the individual ginsenoside contents of the American ginseng in different parts and ages of the plant. The results demonstrated that the leaves, root hairs, and rhizomes of Panax quinquefolius L. contained higher ginsenoside contents, followed by the main roots and stems. The leaves contained dramatically higher levels of ginsenoside Rg1 Rb3, and Rd than the other four parts. Higher contents of Rb1 and Re were present in the main roots, root hairs, and rhizomes. The amount of ginsenoside content in the stems was the lowest. The total content of the seven ginsenosides in main roots, root hairs and rhizomes increased with the age of the plant. In contrast, the ginsenoside contents in the leaves and stems decreased with a year of growth.  相似文献   

4.
A sensitive and reliable LC‐ESI‐MS method for simultaneous determination of nine ginsenosides (Rh1, Rg2, Rg1, Rf, Re, Rd, Rc, Rb2 and Rb1) in rat plasma was developed and validated using saikosaponin A as an internal standard. The samples were extracted by solid‐phase extraction. Chromatographic separation was carried out on a Hypersil Gold C18 column (100 × 2.1 mm, 5 µm) by stepwise gradient elution with water (0.1% formic acid, v/v) and acetonitrile as the mobile phase. Detection was determined by selective ion monitoring mode using electrospray ionization in the negative ion mode. Good linearity over the investigated concentration ranges was observed with the values of r higher than 0.9900. The intra‐ and inter‐day precisions were all no more than 15% and the average recoveries varied from 71.8 to 91.7%. This quantitative measurement was successfully applied to a pharmacokinetic study of Yi‐Qi‐Fu‐Mai injection. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A rapid and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method has been developed and validated for simultaneous quantification of ginsenosides Rg1, Re and notoginsenoside R1 in human plasma. Chromatography was performed on Capcell Pak C18 MG II column using a binary gradient using mobile phase A (5 mm ammonium formate solution) and B (methanol, containing 5 mm ammonium formate) at a flow rate of 0.3 mL/min. The entire chromatographic run time was 3.2 min. Quantification was achieved using multiple reaction monitoring in positive mode using API 3000. This method was validated in terms of specificity, linearity, precision, accuracy, matrix effect and stability. The calibration curves were linear in the concentration range of 0.020–5.00 ng/mL for ginsenosides Rg1, Re and notoginsenoside R1. The lower limit of quantification (LLOQ) of this method was 0.020 ng/mL. The intra‐run and inter‐run precision values were within 12.31% for ginsenoside Rg1, 14.13% for ginsenoside Re and 11.46% for notoginsenoside R1 at their LLOQ levels. The samples were stable under all tested conditions. This method was successfully applied to study the pharmacokinetics of ginsenoside Rg1 and notoginsenoside R1 in 24 healthy volunteers following oral administration of 200 mg Sanqi Tongshu Enteric‐Pellets Capsule.  相似文献   

6.
Fractions major in ginsenosides Rg1 and Rb1 from Sanchi saponins were transformed by human fecal flora. This study yielded the corresponding aglycone, protopanaxatriol, in 49.4% from Rg1, protopanaxadiol 20‐O‐glucoside in 54.8% from Rb1, and dihydroprotopanaxadiol 20‐O‐glucoside in 87.6% from dihydro Rb1, by incubation with healthy feces for 70 h in subgram level. Never the less large‐scale incubation of crude Sanchi saponins revealed the complete biotransformation of Rb1 and the almost unchanged Rg1. A small amount of Rg1 was found to be converted into 20 R‐ginsenoside Rh1 and its dehydration product, 20(22) Z‐ginsenoside Rh4.  相似文献   

7.
Ginsenosides have been widely conceded as having various biological activities and are considered to be the active ingredient of ginseng. Nowadays, preparative high‐performance liquid chromatography is considered to be a highly efficient method for ginseng saponins purification and preparation. However, in the process of practical application, due to the complex and varied composition of natural products and relatively simple pretreatment process, it is likely to block the chromatographic column and affect the separation efficiency and its service life. In this work, an orthogonal strategy was developed; in the first‐dimension separation, reverse‐phase macroporous resin was applied to remove impurities in ginseng crude extracts and classified ginseng extracts into protopanaxatriol and protopanaxadiol fractions. In the second‐dimension separation, the obtained fractions were further separated by a preparative hydrophilic column, and finally yielded 11 pure compounds. Eight of them identified as ginsenoside Rh1, Rg2, Rd, Rc, Rb2, Rb1, Rg1, and Re by standards comparison and electrospray ionization mass spectrometry. The purity of these ginsenosides was assessed by high‐performance liquid chromatography with UV detection.  相似文献   

8.
Ginseng (Panax ginseng C. A. Meyer) has been one of the most popular herbs used for nutritional and medicinal purposes by the people of eastern Asia for thousands of years. Ginsenosides, the mostly widely studied chemical components of ginseng, are quite different depending on the processing method used. A number of studies demonstrate the countercurrent chromatography (CCC) separation of ginsenosides from several sources; however, there is no single report demonstrating a one-step separation of all of these ginsenosides from different sources. In the present study, we have successfully developed an efficient CCC separation methodology in which the flow-rate gradient technique was coupled with a new solvent gradient dilution strategy for the isolation of ginsenosides from Korean white (peeled off dried P. ginseng) and red ginseng (steam-treated P. ginseng). The crude samples were initially prepared by extraction with butanol and were further purified with CCC using solvent gradients composed of methylene chloride–methanol–isopropanol–water (different ratios, v/v). Gas chromatography coupled with flame ionization detector was used to analyze the components of the two-phase solvent mixture. Each phase solvent mixture was prepared without presaturation, which saves time and reduces the solvent consumption. Finally, 13 ginsenosides have been purified from red ginseng with the new technique, including Rg1, Re, Rf, Rg2, Rb1, Rb2, Rc, Rd, Rg3, Rk1, Rg5, Rg6, and F4. Meanwhile, eight ginsenosides have been purified from white ginseng, including Rg1, Re, Rf, Rh1, Rb1, Rb2, Rc, and Rd by using a single-solvent system. Thus, the present technique could be used for the purification of ginsenosides from all types’ ginseng sources. To our knowledge, this is the first report involving the separation of ginsenoside Rg2 and Rg6 and the one-step separation of thirteen ginsenosides from red ginseng by CCC.  相似文献   

9.
Two new dammarane‐type triterpenoidal saponins, notoginsenosides FP1 ( 1 ) and FP2 ( 2 ), were isolated from the fruit pedicels of Panax notoginseng, along with 22 known compounds. Their structures were elucidated on the basis of spectroscopic evidences and chemical methods. The known compounds were identified as ginsenosides Rg1 ( 3 ), Re ( 4 ), Rb3 ( 5 ), Rc ( 6 ), Rd ( 7 ), Rb2 ( 8 ), Rb1 ( 9 ), F2 ( 10 ), and F1 ( 11 ); as notoginsenosides R1 ( 12 ), Fa ( 13 ), and Fc ( 14 ); as vina‐ginsenoside R7 ( 15 ); as gypenosides IX ( 16 ), XVII ( 17 ), and XIII ( 18 ), and as chikusetsusaponin‐L5 ( 19 ), quercetin 3‐Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐galactopyranoside ( 20 ), kaempferol 3‐Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐galactopyranoside ( 21 ), benzyl‐β‐primeveroside ( 22 ), (S)‐tryptophan ( 23 ), and icariside B6 ( 24 ). Compounds 15, 19 and 22 – 24 are reported for the first time from the title plant.  相似文献   

10.
The goal of this study is to investigate the biotransformation of ginsenoside Rg1 in vivo. A highly sensitive and specific LC‐MS/MS method was developed and used for metabolite identification in rat feces and urine after oral administration of ginsenoside Rg1. Four metabolites of Rg1 were detected in rat feces and three metabolites of Rg1 were detected in rat urine. Deglycosylation and oxygenation were found to be the major metabolic pathways of ginsenoside Rg1 after oral administration in rat. Except for the reported metabolites Rh1 and protopanaxatriol, mono‐oxygenated Rg1 and mono‐oxygenated protopanaxatriol were detected for the first time after oral administration of Rg1. The in vivo metabolite profiling of ginsenoside Rg1 in rat was proposed. Viewed collectively, Rg1 was metabolized to mono‐oxygenated Rg1, Rh1, protopanaxatriol and the secondary metabolite mono‐oxygenated protopanaxatriol in rat. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Background: Ginseng is widely used as herb or food. Different parts of ginseng have diverse usages. However, the comprehensive analysis on the ginsenosides in different parts of ginseng root is scarce. Methods: An ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) combined with UNIFI informatics platform and ultra-high-performance liquid chromatography-charged aerosol detection (UHPLC-CAD) were employed to evaluate the different parts of cultivated ginseng root. Results: 105 ginsenosides including 16 new compounds were identified or tentatively characterized. 22 potential chemical markers were identified, 20, 17, and 19 for main root (MR) and fibrous root (FR), main root (MR) and branch root (BR), and main root (MR) and rhizome (RH), respectively. The relative contents of Re, Rb1, 20(R)-Rh1, Rd, and Rf were highest in FR. The relative content of Rg1 was highest in RH. The total relative content of pharmacopoeia indicators Rg1, Re, and Rb1 was highest in FR. Conclusion: The differences among these parts were the compositions and relative contents of ginsenosides. Under our research conditions, the peak area ratio of Rg1 and Re could distinguish the MR and FR samples. Fibrous roots showed rich ingredients and high ginsenosides contents which should be further utilized.  相似文献   

12.
High-performance liquid chromatographic (HPLC) methods were developed for the determination of glycyrrhizin in radix Glycyrrhizae and ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf and Rg1 in radix Notoginseng. These methods were used as reference methods for near-infrared (NIR) spectroscopy. Spectroscopic calibrations were developed for the determination of glycyrrhizin, the total content of ginsenosides and the individual major ginsenosides Rb1, Rd, Re and Rg1. Standard errors of cross validation (SECV) were 1.22 mg g–1 for glycyrrhizin (concentration range 21.3–34.1 mg g–1) and 0.99 mg g–1 for the sum of ginsenosides (concentration range 55.3–¶71.1 mg g–1). The corresponding coefficients of determination (R2) were 0.94 and 0.98, respectively. The SECVs were generally less than a factor of 2.5 of the repeatability standard deviation of the HPLC methods.  相似文献   

13.
As a famous health food, roots of Panax quinquefolium L. possessed immune regulation and enhancement of the central nervous system, in which ginsenosides are the main active component with different numbers and positions of sugars, causing different chemical polarities with a challenge for the separation and isolation. In this study, a fast and effective bilinear gradient counter-current chromatography was proposed for preparative isolation ginsenosides with a broad partition coefficient range from roots of Panax quinquefolium L. In terms of the established method, the mobile phases comprising n-butanol and ethyl acetate were achieved by adjusting the proportion. Coupled with the preparative HPLC, eleven main ginsenosides were successfully separated, including ginsenoside Rg1 ( 1 ), Re ( 2 ), acetyl ginsenoside Rg1 ( 3 ), Rb1 ( 4 ), Rc ( 5 ), Rg2 ( 6 ), Rb3 ( 7 ), quinquefolium R1 ( 8 ), Rd ( 9 ), gypenoside X VII ( 10 ) and notoginsenoside Fd ( 11 ), with purities exceeding 95% according to the HPLC results. Tandem mass spectrometry and electrospray ionization mass spectrometry were adopted for recognizing the isolated compound architectures. Our study suggests that linear gradient counter-current chromatography effectively separates the broad partition coefficient range of ginsenosides compounds from the roots of Panax quinquefolium L. In addition, it can apply to active compound isolation from other complicated natural products.  相似文献   

14.
The chromatographic elution process is a key step in the production of notoginseng total saponins. Due to quality variability of loading samples and resin capacity decreasing over cycle time, saponins, especially the five main saponins of notoginseng total saponins, need to be monitored in real time during the elution process. In this study, convolutional neural networks, one of the most popular deep learning methods, were used to develop quantitative calibration models based on in‐line near‐infrared spectroscopy for notoginsenoside R1, ginsenosides Rg1, Re, Rb1 and Rd, and their sum concentration, with root mean square error of prediction values of 0.87, 2.76, 0.60, 1.57, 0.28, and 4.99 mg/mL, respectively. Partial least squares calibration models were also developed for model performance comparison. Results show predicted concentration profiles outputted by both the convolutional neural network models and partial least squares models show agreements with the real trends defined by reference measurements, and can be used for elution process monitoring and endpoint determination. To the best of our knowledge, this is the first reported case study of combining convolutional neural networks and in‐line near‐infrared spectroscopy for monitoring of the chromatographic elution process in commercial production of botanical drug products.  相似文献   

15.
A sensitive LC‐MS/MS method was developed and validated for simultaneous quantification of 11 constituents, ginsenoside Rg1, Re, Rf, Rg2, Rb1, Rd, Rc, ophiopogonin D, schisandrin, schisandrol B and schizandrin B, in rat serum using digoxin as the internal standard (IS). The serum samples were pretreated and extracted with a two‐step liquid–liquid extraction. Chromatographic separation was achieved on a C18 analytical column with a proper gradient elution using 0.02% acetic acid aqueous solution and 0.02% acetic acid–acetonitrile as mobile phase at a flow rate of 0.5 mL/min. MS detection was performed using multiple reaction monitoring via an electrospray ionization source. Good linearity was observed in the validated concentration range for every analyte (r2 ≥0.9929), and the lower limits of quantitation of the analytes were in the range of 0.044–1.190 ng/mL in rat serum. Intra‐ and inter‐day precisions were <14.2%. The accuracy expressed as recovery was within the range of 85.1–112.8%. The extraction recoveries were >75.8%.The validated method was successfully applied to a pharmacokinetic study of all analytes in rats after single intravenous administration of Shengmai injection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Wild ginseng (W-GS), ginseng under forest (F-GS, planted in mountain forest and growing in natural environment), and cultivated ginseng (C-GS) were compared via HPLC-DAD and HPLC-IT-TOF-MSn. A total of 199 saponins, including 16 potential new compounds, were tentatively identified from 100 mg W-GS (177 saponins in W-GS with 11 new compounds), F-GS (56 saponins with 1 new compound), and C-GS (60 saponins with 6 new compounds). There were 21 saponins detected from all the W-GS, F-GS, and C-GS. Fifty saponins were only detected from W-GS, including 23 saponins found in ginseng for the first time. Contents of ginsenosides Re (12.36–13.91 mg/g), Rh1 (7.46–7.65 mg/g), Rd (12.94–12.98 mg/g), and the total contents (50.52–55.51 mg/g) of Rg1, Re, Rf, Rb1, Rg2, Rh1, and Rd in W-GS were remarkably higher than those in F-GS (Re 1.22–3.50 mg/g, Rh1 0.15–1.49 mg/g, Rd 0.19–1.49 mg/g, total 5.69–18.74 mg/g), and C-GS (Re 0.30–3.45 mg/g, Rh1 0.05–3.42 mg/g, Rd 0.17–1.68 mg/g, total 2.99–19.55 mg/g). Contents of Re and Rf were significantly higher in F-GS than those in C-GS (p < 0.05). Using the contents of Re, Rf, or Rb1, approximately a half number of cultivated ginseng samples could be identified from ginseng under forest. Contents of Rg1, Re, Rg2, Rh1, as well as the total contents of the seven ginsenosides were highest in ginseng older than 15 years, middle–high in ginseng between 10 to 15 years old, and lowest in ginseng younger than 10 years. Contents of Rg1, Re, Rf, Rb1, Rg2, and the total of seven ginsenosides were significantly related to the growing ages of ginseng (p < 0.10). Similarities of chromatographic fingerprints to W-GS were significantly higher (p < 0.05) for F-GS (median: 0.824) than C-GS (median: 0.745). A characteristic peak pattern in fingerprint was also discovered for distinguishing three types of ginseng. Conclusively, wild ginseng was remarkably superior to ginseng under forest and cultivated ginseng, with ginseng under forest slightly closer to wild ginseng than cultivated ginseng. The differences among wild ginseng, ginseng under forest, and cultivated ginseng in saponin compositions and contents of ginsenosides were mainly attributed to their growing ages.  相似文献   

17.
Various traditional Chinese medicine preparations developed from Notoginseng total saponins, including Xueshuantong injection and Xuesaitong injection, are extensively used in China to treat cardiocerebrovascular diseases. However, the difference of their saponin compositions remains unknown. An ultra high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry based metabolomics approach was developed to probe the saponin discrimination between Xueshuantong and Xuesaitong and the related factors by large sample analysis. A highly efficient chromatographic separation was achieved on an HSS T3 column within 20 min with the holistic metabolites information recorded in the negative MSE mode. A six‐step data pretreatment procedure mainly based on Progenesis QI and mass defect filtering was established. Pattern recognition chemometrics was used to discover the potential saponin markers. The saponin composition of Wuzhou Xueshuantong showed distinct discrimination from the other products. Wuzhou Xueshuantong contains more abundant protopanaxatriol‐type noto‐R1, Rg1, Re, and protopanaxadiol‐type Rb1, but less Rd and other low‐polarity protopanaxadiol‐type ginsenosides. These differences could not directly correlate to the use of different parts of Panax notoginseng , but possibly to the different preparation techniques employed by different manufacturers. These results are beneficial to the establishment of pharmacopoeia standards and the assessment of the efficacy and adverse drug reactions for these homologous products.  相似文献   

18.
New approaches for the recovery of ginsenosides are presented that greatly simplify the liquid chromatographic (LC) determination of the total content of eight ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1 and Rg2) in powdered Panax ginseng rhizomes. The extraction protocols not only recover the neutral ginsenosides, but also simultaneously incorporate base-catalyzed hydrolysis of the malonyl-ginsenosides using dilute potassium hydroxide added to the methanol–water extractant. This eliminates the need for an independent extraction step followed by acid- or base-catalyzed hydrolysis. Both ultrasonically-assisted and microwave-assisted extraction methods are developed. The optimization of these simplified methods to remove pendant malonate esters, while retaining the glycosidic linkages, was determined by LC through variation of the extraction/hydrolysis time, order of hydrolysis reagent addition, and evaluation of multiple extractions. A comparison of the ginsenoside profiles obtained with and without addition of base to the extractant solution was made using LCMS with positive-mode electrospray ionization (ESI+) detection. A number of malonyl-ginsenosides were tentatively identified by their mass spectral fragmentation spectra and indicating that they were converted to the free ginsenosides by the new extraction/hydrolysis procedure.
Figure
LCUV chromatograms for different extraction solvents  相似文献   

19.
A new assay based on ultrafiltration, liquid chromatography and mass spectrometry was developed for the rapid screening and identification of the ligands for α‐glucosidase from the extract of Panax japonicus. Six saponins were identified as α‐glucosidase inhibitors. Subsequently, the specific binding ligands, namely, notoginsenoside R1, ginsenoside Rb1, chikusetsusaponin V, chikusetsusaponin IV, chikusetsusaponin IVa, and ginsenoside Rd (the purities were 94.18, 95.43, 96.09, 93.26, 94.50, 93.86%, respectively) were separated by counter‐current chromatography using two‐phase solvent systems composed of tert‐butyl methyl ether, acetonitrile, 0.1% aqueous formic acid (3.8:1.0:4.4, v/v/v) and the solvent system composed of methylene chloride, isopropanol, methanol, 0.1% aqueous formic acid (5.8:1.0:6.0:2.2, v/v/v). The results demonstrate that ultrafiltration, liquid chromatography and mass spectrometry combined with high‐speed counter‐current chromatography might provide not only a powerful tool for screening and isolating α‐glucosidase inhibitors in complex samples but also a useful platform for discovering bioactive compounds for the prevention and treatment of diabetes mellitus.  相似文献   

20.
Borneol (Bingpian), a monoterpenoid pharmaceutical ingredient, is commonly used as a main composition in traditional Chinese medicine preparations such as compound Danshen dropping pills (CDDP) and has also been approved by the U.S. Food and Drug Administration as a flavoring substance or adjuvant in food. Borneol plays a regulating and guiding role as a messenger drug in CDDP. However, the effect of borneol on the pharmacokinetics of the components of CDDP in human plasma is unclear. In this study, we investigate the effects of borneol on the pharmacokinetics of ginsenoside Rb1 (Rb1), ginsenoside Rg1 (Rg1), and notoginsenoside R1 (NR1) in CDDP. We used a double-cycle crossover-administration model in 12 healthy male volunteers, administered CDDP with borneol (drug T) and without borneol (drug R). The selective response monitoring mode was used for MS quantification in the positive mode. As a result, we found that borneol could significantly affect the pharmacokinetic parameters of notoginsenosides and increase the absorption and systemic exposure of Rb1, Rg1, and NR1 in human plasma by ~1.85–3.71 times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号