首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A speedy and selective ultra‐HPLC‐MS/MS method for simultaneous determination of deoxynivalenol (DON), 3‐acetyldeoxynivalenol (3‐ADON), 15‐ADON, nivalenol and fusarenon X in traditional Chinese medicines (TCMs) was developed. The method was based on one‐step sample cleanup using reliable homemade cleanup cartridges. A linear gradient mobile‐phase system, consisting of water containing 0.2% aqueous ammonia and acetonitrile/methanol (90:10, v/v) at a flow rate of 0.4 mL/min, and an Acquity UPLC HSS T3 column (100 mm×2.1 mm, 1.8 μm) were employed to obtain the best resolution of the target analytes. [13C15]–DON was used as the internal standard to accomplish as accurate as possible quantitation. The established method was further validated by determining the linearity (R2≥0.9990), sensitivity (LOQ, 0.29–0.99 μg/kg), recovery (88.5–119.5%) and precision (RSD≤15.8%). It was shown to be a suitable method for simultaneous determination of DON, 3‐ADON, 15‐ADON, nivalenol and fusarenon X in various TCM matrices. The utility and practical impact of the method was demonstrated using different TCM samples.  相似文献   

2.
A simple enantioselective HPLC method was developed for measuring carfentrazone‐ethyl enantiomers. The separation and determination was accomplished on an amylose tris[(S)‐α‐methylbenzylcarbamate] (Chiralpak AS) column using n‐hexane/ethanol (98:2, v/v) as mobile phase at a flow rate of 1.0 mL/min with UV detection at 248 nm. The effects of mobile‐phase composition and column temperature on the enantioseparation were discussed. The accuracy, precision, linearity, LODs, and LOQ of the method were also investigated. LOD was 0.001 mg/kg in water, 0.015 mg/kg in soil and wheat, with an LOQ of 0.0025 mg/kg in water and 0.05 mg/kg in soil and wheat for each enantiomer of carfentrazone‐ethyl. SPE was used for the enrichment and cleanup of soil, water, and wheat samples. Recoveries for two enantiomers were 88.4–106.7% with RSDr of 4.2–9.8% at 0.1, 0.5, and 1 mg/kg levels from soil, 85.8–99.5% with the RSDr of 4.4?9.6% at 0.005, 0.025, and 0.05 mg/kg levels from water, and from wheat the recoveries were 86.3?91.3% with RSDr below 5.0% at 0.2, 0.5, and 1 mg/kg levels. This method could be used to identify and quantify the carfentrazone‐ethyl enantiomers in food and environment.  相似文献   

3.
Non‐aqueous capillary electrophoresis–mass spectrometry (NACE‐MS) was developed for trace analyses of β‐agonists (i.e. clenbuterol, salbutamol and terbutaline) in pork. The NACE was in 18 mM ammonium acetate in methanol–acetonitrile–glacial acetic acid (66 : 33 : 1, v/v/v) using a voltage of 28 kV. The hyphenation of CE with a time‐of‐flight MS was performed by electrospray ionization interface employing 5 mM ammonium acetate in methanol–water (80 : 20, v/v) as the sheath liquid at a flow rate of 2 μL/min. Method sensitivity was enhanced by a co‐injection technique (combination of hydrodynamic and electrokinetic injection) using a pressure of 50 mbar and a voltage of 10 kV for 12 s. The method was validated in comparison with HPLC–MS‐MS. The NACE‐MS procedure provided excellent detection limits of 0.3 ppb for all analytes. Method linearity was good (r2 > 0.999, in a range of 0.8–1000 ppb for all analytes). Precision showed %RSDs of <17.7%. Sample pre‐treatment was carried out by solid‐phase extraction using mixed mode reversed phase/cation exchange cartridges yielding recoveries between 69 and 80%. The NACE‐MS could be successfully used for the analysis of β‐agonists in pork samples and results showed no statistical differences from the values reported by the Ministry of Public Health, Thailand using HPLC‐MS‐MS method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A simple and rapid high‐performance thin‐layer chromatographic method was developed for the separation and determination of six flavonoids (rutin, luteolin‐7‐O‐β‐glucoside, chamaemeloside, apigenin‐7‐O‐β‐glucoside, luteolin, apigenin) and one coumarin, umbelliferone from chamomile plant samples and dietary supplements. The separation was achieved on amino silica stationary phase using dichloromethane/acetonitrile/ethyl formate/glacial acetic acid/formic acid (11:2.5:3:1.25:1.25 v/v/v/v/v) as the mobile phase. The quantitation of each compound was carried out using densitometric reflection/absorption mode at their respective absorbance maxima after postchromatographic derivatization using natural products reagent (1% w/v methanolic solution of diphenylboric acid‐β‐ethylamino ester). The method was validated for specificity, limits of detection and quantification, precision (intra‐ and interday) and accuracy. The limits of detection and quantification were found to be in the range from 6–18 and 16–55 ng/band for six flavonoids and one coumarin, respectively. The intra‐ and interday precision was found to be <5% RSD and recovery of all the compounds was >90%. The data acquired from high‐performance thin‐layer chromatography was processed by principal component analysis using XLSTAT statistical software. Application of principal component analysis and agglomerative hierarchial clustering was successfully able to differentiate two chamomiles (German and Roman) and Chrysanthemum.  相似文献   

5.
A very accurate and selective LC‐MS/MS method was developed and validated for the quantification of 2′‐C‐modified nucleoside triphosphate in liver tissue samples. An efficient pretreatment procedure of liver tissue samples was developed, using a fully automated SPE procedure with 96‐well SPE plate (weak anion exchange sorbent, 30 mg). Nucleotide hydrophilic interaction chromatography has been performed on an aminopropyl column (100 mm×2.0 mm, 3 μm) using a gradient mixture of ACN and ACN/water (5:95 v/v) with 20 mM ammonium acetate at pH 9.45 as mobile phase at 300 μL/min flow rate. The 2′‐C‐modified nucleoside triphosphate was detected in the negative ESI mode in multiple reaction monitoring (MRM) mode. Calibration curve was linear over the 0.05–50 μM concentration range. Satisfying results, confirming the high reliability of the established LC‐MS/MS method, were obtained for intraday precision (CV = 2.5–9.1%) and accuracy (92.6–94.8%) and interday precision (CV = 9.6–11.5%) and accuracy (94.4–102.4%) as well as for recovery (82.0–112.6%) and selectivity. The method has been successfully applied for pharmacokinetic studies of 2′‐C‐methyl‐cytidine‐triphosphate in liver tissue samples.  相似文献   

6.
A simple, rapid and economical method was developed and validated for the analysis and quantification of 1‐(propan‐2‐ylamino)‐4‐propoxy‐9H ‐thioxanthen‐9‐one (TX5), a P‐glycoprotein inducer/activator, in biological samples, using reverse‐phase high‐performance liquid chromatography (HPLC). A C18 column and a mobile phase composed of methanol–water (90/10, v /v) with 1% (v/v) triethylamine, at a flow rate of 1 mL/min, were used for chromatographic separation. TX5 standards (0.5–150 μm ) were prepared in human serum. Methanol was used for TX5 extraction and serum protein precipitation. After filtration, samples were injected into the HPLC apparatus and TX5 was quantified by a conventional UV detector at 255 nm. The TX5 retention time was 13 min in this isocratic system. The method was validated according to ICH guidelines for specificity/selectivity, linearity, accuracy, precision, limits of detection and quantification (LOD and LOQ) and recovery. The method was proved to be selective, as there were no interferences of endogenous compounds with the same retention time of TX5. Also, the developed method was linear (r 2 ≥ 0.99) for TX5 concentrations between 0.5 and 150 μm and the LOD and LOQ were 0.08 and 0.23 μm , respectively. The results indicated that the reported method could meet the requirements for TX5 analysis in the trace amounts expected to be present in biological samples.  相似文献   

7.
An LC‐MS/MS method for the simultaneous quantitation of niacin (NA) and its metabolites, i.e. nicotinamide (NAM), nicotinuric acid (NUA) and N‐methyl‐2‐pyridone‐5‐carboxamide (2‐Pyr), in human plasma (1 mL) was developed and validated using nevirapine as an internal standard (IS). Extraction of the NA and its metabolites along with the IS from human plasma was accomplished using a simple liquid–liquid extraction. The chromatographic separation of NA, NAM, NUA, 2‐Pyr and IS was achieved on a Hypersil‐BDS column (150 ¥ 4.6 mm, 5 mm) column using a mobile phase consisting of 0.1% formic acid : acetonitrile (20:80 v/v) at a flow rate of 1 mL/min. The total run time of analysis was 2 min and elution of NA, NAM, NUA, 2‐Pyr and IS occurred at 1.37, 1.46, 1.40, 1.06 and 1.27 min, respectively. A detailed validation of the method was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 100–20000 ng/mL for NA; 10–1600 ng/mL for NUA and NAM and 50–5000 ng/mL for 2‐Pyr with mean correlation coefficient of ≥0.99 for each analyte. The method was sensitive, specific, precise, accurate and suitable for bioequivalence and pharmacokinetic studies. The developed assay method was successfully applied to a pharmacokinetic study in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A sensitive and selective liquid chromatography–tandem mass spectrometric (LC–MS/MS) assay method has been developed and validated for the enantioselective determination of manidipine in human plasma using isotope‐labeled compounds as internal standards. After solid‐phase extraction, R ‐(−)‐manidipine and S ‐(+)‐manidipine were chromatographed on a Chiralpack IC‐3 C18 column using a isocratic mobile phase composed of 2 mm ammonium bicarbonate and acetonitrile (15:85, v /v). The precursor ion to product ion transitions for the enantiomers and internal standards were monitored in the multiple reaction monitoring and positive ionization mode using an API‐4000 mass spectrometer. The method was linear over the concentration range of 0.05–10.2 ng/mL for both enantiomers. The precision and accuracy results over five concentration levels in five different batches were well within the acceptance limits. The mean extraction recovery was >80% for both enantiomers. A variety of stability tests were executed in plasma and in neat samples, which complies with the FDA guidelines. After complete validation, the method was successfully applied to a pharmacokinetic study of a manidipine 20 mg oral dose in 10 healthy South India subjects under fasting conditions. The assay reproducibility is shown through incurred samples reanalysis of 20 subject plasma samples.  相似文献   

9.
A selective and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the simultaneous quantitative determination of 1,5‐dicaffeoylquinic acid (1,5‐DCQA) and 1‐O‐ acetylbritannilactone (1‐O‐ ABL) in rat plasma. Chromatographic separation was performed on a Zorbax Eclipse XDB‐C18 column using isocratic mobile phase consisting of methanol–water–formic acid (70:30:0.1, v /v/v) at a flow rate of 0.25 mL/min. The detection was achieved using a triple‐quadrupole tandem MS in selected reaction monitoring mode. The calibration curves of all analytes in plasma showed good linearity over the concentration ranges of 0.850–213 ng/mL for 1,5‐DCQA, and 0.520–130 ng/mL for 1‐O‐ ABL, respectively. The extraction recoveries were ≥78.5%, and the matrix effect ranged from 91.4 to 102.7% in all the plasma samples. The method was successfully applied for the pharmacokinetic study of the two active components in the collected plasma following oral administration of Inula britannica extract in rats.  相似文献   

10.
A rapid and selective liquid chromatography/tandem mass spectrometric method was developed for the simultaneous determination of capecitabine and its metabolites 5′‐deoxy‐5‐fluorocytidine (5′‐DFCR), 5′‐deoxy‐5‐fluorouracil (5′‐DFUR), 5‐fluorouracil (5‐FU) and dihydro‐5‐fluorouracil (FUH2) in human plasma. A 200 μL human plasma aliquot was spiked with a mixture of internal standards fludarabine and 5‐chlorouracil. A single‐step protein precipitation method was employed using 10% (v/v) trichloroacetic acid in water to separate analytes from bio‐matrices. Volumes of 20 μL of the supernatant were directly injected onto the HPLC system. Separation was achieved on a 30 × 2.1 mm Hypercarb (porous graphitic carbon) column using a gradient by mixing 10 mm ammonium acetate and acetonitrile–2‐propanol–tetrahydrofuran (1 : 3 : 2.25, v/v/v). The detection was performed using a Finnigan TSQ Quantum Ultra equipped with the electrospray ion source operated in positive and negative mode. The assay quantifies a range from 10 to 1000 ng/mL for capecitabine, from 10 to 5000 ng/mL for 5′‐DFCR and 5′‐DFUR, and from 50 to 5000 ng/mL for 5‐FU and FUH2 using a plasma sample of 200 μL. Correlation coefficients (r2) of the calibration curves in human plasma were better than 0.99 for all compounds. At all concentration levels, deviations of measured concentrations from nominal concentration were between ?4.41 and 3.65% with CV values less than 12.0% for capecitabine, between ?7.00 and 6.59% with CV values less than 13.0 for 5′‐DFUR, between ?3.25 and 4.11% with CV values less than 9.34% for 5′‐DFCR, between ?5.54 and 5.91% with CV values less than 9.69% for 5‐FU and between ?4.26 and 6.86% with CV values less than 14.9% for FUH2. The described method was successfully applied for the evaluation of the pharmacokinetic profile of capecitabine and its metabolites in plasma of treated cancer patients. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Matrix solid‐phase dispersion combined with dispersive liquid–liquid microextraction has been developed as a new sample pretreatment method for the determination of four sulfonylurea herbicides (chlorsulfuron, bensulfuron‐methyl, chlorimuron‐ethyl, and pyrazosulfuron) in tea by high‐performance liquid chromatography with diode array detection. The extraction and cleanup by matrix solid‐phase dispersion was carried out by using CN‐silica as dispersant and carbon nanotubes as cleanup sorbent eluted with acidified dichloromethane. The eluent of matrix solid‐phase dispersion was evaporated and redissolved in 0.5 mL methanol, and used as the dispersive solvent of the following dispersive liquid–liquid microextraction procedure for further purification and enrichment of the target analytes before high‐performance liquid chromatography analysis. Under the optimum conditions, the method yielded a linear calibration curve in the concentration range from 5.0 to 10 000 ng/g for target analytes with a correlation coefficients (r2) ranging from 0.9959 to 0.9998. The limits of detection for the analytes were in the range of 1.31–2.81 ng/g. Recoveries of the four sulfonylurea herbicides at two fortification levels were between 72.8 and 110.6% with relative standard deviations lower than 6.95%. The method was successfully applied to the analysis of four sulfonylurea herbicides in several tea samples.  相似文献   

12.
A simple and rapid method was developed for the determination of three free cytokinins, namely, N6‐(Δ2‐isopentenyl)adenine, zeatin, and dihydrozeatin, in plants using TurboFlow on‐line cleanup liquid chromatography combined with hybrid quadrupole‐Orbitrap high‐resolution mass spectrometry. The samples were extracted using acetonitrile, and then the extract was purified on a C18‐p column, in which the sample matrix was removed and the analytes were retained. Subsequently, the analytes were eluted from the extraction column onto the analytical column (Hypersil Gold C18 column) prior to chromatographic separation and hybrid Q‐Orbitrap detection using the targeted‐MS2 scan mode. The linearity was satisfactory with a correlation coefficient of >0.999 at concentrations ranging from 5–5000 pg/mL. The limits of quantification for the analytes ranged from 4.2–5.2 pg/mL. The intra‐ and inter‐day average recoveries of analytes fortified at three levels ranged from 85.4–108.2%, and the intra‐ and inter‐day relative standard deviations ranged from 4.04–8.57%. The method was successfully applied for the determination of free cytokinins in different tissue samples of Oryza sativa and Arabidopsis thaliana.  相似文献   

13.
A simple and rapid normal‐phase HPLC method for enantiospecific separation of a psychostimulant, adrafinil (ADL), and its metabolite modafinil (MDL) in rat serum and urine was developed. The separation was accomplished on a normal‐phase polysaccharide stationary phase Chiralcel OJ‐H using n‐hexane–ethanol (62:38 v/v) as a mobile phase at a flow rate of 1.0 mL/min. Detection was carried out at 225 nm using a photo diode array (PDA) detector. The elution order of the enantiomers was determined by a polarimeter connected in series with the PDA. ADL and its metabolite were recovered from rat serum and urine by solid phase extraction using Oasis HLB cartridges and the mean recoveries were ≥80%. The enantiomers were eluted within 15 min without any interference from endogenous substances. The calibration curves were linear (r2 > 0.998) in the concentration range of 1.20–500 µg/mL for ADL and MDL. The assay was specific, accurate, precise and reproducible (intra‐ and inter‐day precisions RSDs <7.2%). ADL in rat serum was stable over three freeze–thaw cycles at ambient temperature for 4 h. The method was successfully applied to pharmacokinetic studies of adrafinil after an oral administration to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A high‐throughput and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the determination of flunarizine in human plasma. Liquid–liquid extraction under acidic conditions was used to extract flunarizine and flunarizine‐d8 from 100 μL human plasma. The mean extraction recovery obtained for flunarizine was 98.85% without compromising the sensitivity of the method. The chromatographic separation was performed on Hypersil Gold C18 (50 × 2.1 mm, 3 μm) column using methanol–10 mm ammonium formate, pH 3.0 (90:10, v/v) as the mobile phase. A tandem mass spectrometer (API‐5500) equipped with an electrospray ionization source in the positive ion mode was used for detection of flunarizine. Multiple reaction monitoring was selected for quantitation using the transitions, m/z 405.2 → 203.2 for flunarizine and m/z 413.1 → 203.2 for flunarizine‐d8. The validated concentration range was established from 0.10 to 100 ng/mL. The accuracy (96.1–103.1%), intra‐batch and inter‐batch precision (CV ≤ 5.2%) were satisfactory and the drug was stable in human plasma under all tested conditions. The method was used to evaluate the pharmacokinetics of 5 and 10 mg flunarizine tablet formulation in 24 healthy subjects. The pharmacokinetic parameters Cmax and AUC were dose‐proportional.  相似文献   

15.
A new method was developed for the quantitation of 3‐α‐hydroxy tibolone, in human plasma, after oral administration of a tablet formulation containing tibolone (2.5 mg). 3‐α‐Hydroxy tibolone was extracted by a liquid–liquid procedure, using cyproterone acetate as internal standard and chlorobutane as extraction solvent. After extraction, samples were submitted to a derivatization step with p‐toluenesulfonyl isocyanate. A mobile phase consisting of acetonitrile and water (72:28 v/v) was used and chromatographic separation was achieved using Agilent XDB C18 column (100 × 4.6 mm i.d.; 5 µm particle size), at 40°C. Mass spectrometric detection was performed using atmospheric pressure chemical ionization in negative mode for 3‐α‐hydroxy tibolone and in positive mode for cyproterone acetate. The fragmentation transitions were m/z 510.2 → m/z 170.1 and m/z 417.0 → m/z 357.1 for 3‐α‐hydroxy tibolone and cyproterone acetate, respectively. Calibration curves were constructed over the range 100–30,000 pg/mL and the method was shown to be specific, precise and accurate, with a mean recovery rate of 94.2% for 3‐α‐hydroxy tibolone. No matrix effect or carry‐over was detected in the samples. The validated method was applied in a pharmacokinetic study with a tibolone formulation in healthy female volunteers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a selective and efficient sample preparation procedure for NLLGLIEAK, signature peptide for the small cell lung cancer (SCLC) biomarker ProGRP, in human serum. The procedure is based on immuno‐capture of ProGRP in 96‐wells microtiter plates coated with the mAb E146. After immuno‐capture and thorough rinse, trypsin was added for in‐well digestion. Subsequently the signature peptide was enriched by SPE and determined by LC‐MS/MS. Various steps in the procedure were optimized to achieve a low LOD such as dilution of sample, tryptic digestion, and SPE cleanup and peptide enrichment conditions. A single quadropole MS was used during optimization of the method. A triple quadropole MS was used in the method evaluation in order to improve sensitivity. The evaluation showed good repeatability (RSD, 11.9–17.5%), accuracy (3.0–6.6%), and linearity (r2 = 0.995) in the tested range (0.5–50 ng/mL). LOD and LOQ were in the pg/mL area (0.20 and 0.33 ng/mL, respectively), enabling the determination of clinically relevant concentrations. The method was applied to two patient samples and showed good agreement with an established immunological reference method. The final method was compared to a previous published LC‐MS method for the determination of ProGRP in serum based on protein precipitation and online sample cleanup. Both showed acceptable method performance, however, the immuno‐capture LC‐MS method was superior with respect to sensitivity. This illustrates the large potential of immuno‐capture sample preparation prior to LC‐MS in protein biomarker quantification.  相似文献   

17.
The concentrations of l ‐tryptophan (Trp) and the metabolite l ‐kynurenine (KYN) can be used to evaluate the in‐vivo activity of indoleamine 2,3‐dioxygenase (IDO) and tryptophan 2,3‐dioxygenase (TDO). As such, a novel method involving derivatization of l ‐Trp and l ‐KYN with (R)‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS) and separation by high‐performance liquid chromatography (HPLC) with tandem mass spectrometric (MS/MS) detection on a triazole‐bonded column (Cosmosil HILIC®) was developed to determine their concentrations. The optimized mobile phase, CH3CN/10 mm ammonium formate in H2O (pH 5.0) (90:10, v/v) eluted isocratically, resulted in satisfactory separation and MS/MS detection of the analytes. The detection limits of l ‐Trp and l ‐KYN were approximately 50 and 4.0 pm , respectively. The column temperature affected the retention behaviour of the Trp and KYN derivatives, with increased column temperatures leading to increased capacity factors; positive enthalpy changes were revealed by van't Hoff plot analyses. Using the proposed LC‐MS/MS method, l ‐Trp and l ‐KYN were successfully determined in 10 μL human serum using 1‐methyl‐l ‐Trp as an internal standard. The precision and recovery of l ‐Trp were in the ranges 2.85–9.29 and 95.8–113%, respectively, while those of l ‐KYN were 2.51–16.0 and 80.8–98.2%, respectively. The proposed LC‐MS/MS method will be useful for evaluating the in vivo activity of IDO or TDO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A flow‐injection analysis chemiluminescence method based on the enhancement effect of the flumequine‐Tb(III) complex on the weak native emission of the Ce(IV)‐Na2SO3 system has been developed for the determination of flumequine. The method includes a cleanup and preconcentration stage (750‐fold) of the sample by hollow‐fiber liquid‐phase microextraction using an Accurel® Q 3/2 polypropylene hollow fiber impregnated with 1‐octanol as the supported liquid membrane. The obtained 50 μL acceptor phase was injected in a 1 mM Tb(III) + 4 mM Ce(IV) in 5% v/v H2SO4 stream and mixed with a 2 mM Na2SO3 stream before its introduction into the flow cell. The chemiluminescence signal was linear in the 0.3–15 ng/mL range, with detection and quantitation limits of 0.1 and 0.3 ng/mL, respectively. The method allows the selective extraction and determination of flumequine in wastewater samples, using simpler and lower‐cost instrumentation and with shorter extraction and analysis times than traditional high‐performance liquid chromatography analysis.  相似文献   

19.
A rapid and sensitive LC–MS/MS method with good accuracy and precision was developed and validated for the pharmacokinetic study of quercetin‐3‐O‐β‐d ‐glucopyranosyl‐7‐O‐β‐d ‐gentiobioside (QGG) in Sprague–Dawley rats. Plasma samples were simply precipitated by methanol and then analyzed by LC–MS/MS. A Venusil® ASB C18 column (2.1 × 50 mm, i.d. 5 μm) was used for separation, with methanol–water (50:50, v/v) as the mobile phase at a flow rate of 300 μL/min. The optimized mass transition ion‐pairs (m/z) for quantitation were 787.3/301.3 for QGG, and 725.3/293.3 for internal standard. The linear range was 7.32–1830 ng/mL with an average correlation coefficient of 0.9992, and the limit of quantification was 7.32 ng/mL. The intra‐ and inter‐day precision and accuracy were less than ±15%. At low, medium and high quality control concentrations, the recovery and matrix effect of the analyte and IS were in the range of 89.06–92.43 and 88.58–97.62%, respectively. The method was applied for the pharmacokinetic study of QGG in Sprague–Dawley rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A new method for the determination of the stereoisomers, in aqueous medium and serum, of the racemic aminoalkanol derivatives I and II of 1,7‐dimethyl‐8,9‐diphenyl‐4‐azatricyclo[5.2.1.02,6]dec‐8‐ene‐3,5,10‐trione, which were found in earlier studies to be potential anticancer drugs, was developed and validated. The optimized conditions included 25 mM phosphate buffer adjusted to pH 2.5, containing γ‐cyclodextrin at a concentration of 5% m/v, as background electrolyte, an applied voltage of +10 kV, and a temperature of 25°C. Separations were carried out using a fused‐silica capillary. The developed method of determining the enantiomers of compounds I(S), I(R) and II(S), II(R) was characterized by the following parameters: a detection time within 10.8 min, a detection limit in the range of 141.2–141.7 ng/mL using the UV absorption detection at 200 nm. Good linearity (R2 = 0.9989–0.9998) was achieved within the range of concentrations studied. A very good extraction yield of 95.4–99.7% was achieved, and recoveries were carried out from both aqueous solutions and matrix serum. The repeatability of the method for peak areas with an accuracy of the determined concentrations of the analytes in the range of 1.43–1.89%, and limits of quantitation in the range of 432.4–436.3 ng/mL were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号