首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sensitivity of an energetic compound gives its vulnerability to accidental detonation, which is caused by an unintended stimulus. Shock and electric spark sensitivities of energetic compounds are two important sensitivity parameters for assessment of their safety in working places. Several correlations are introduced for reliable prediction of shock sensitivities of energetic compounds at 90, 95, and 98 % of theoretical maximum density (TMD) according to NSWC using Navy small‐scale gap test through their electric spark sensitivities. For 11 explosives, where experimental data of both shock and electric spark sensitivities were available, the predicted results at 90 % of TMD are compared with the quantum mechanical approach. The root‐mean‐square (rms) deviations of the new and complex quantum mechanical methods at 90 % TMD are 2.38 and 3.95 kbar, respectively, which confirmed the high reliability of the new method. For high explosives with 90, 95, and 98 % TMD, it will be shown that the predicted results of the new method are also much more reliable than one of the best available empirical approaches. A correlation between shock sensitivities on the basis of aluminum gaps with different thicknesses and the pressure required to initiate material pressed to 90 % TMD is also derived.  相似文献   

2.
 Indentation tests were carried out on a carbon black filled rubber sample on different length scales. The experiments covered the range from aggregation of particles on the submicron scale up to structures which represent the bulk properties of the sample on the millimeter scale. The local stiffness was used to visualize the areas investigated; therefore, mechanical images were obtained for all length scales. So-called “mechanical units” were defined for every scale. The size distribution curves for the mechanical units were analyzed and they were found to be non-Gaussian-shaped for every scale. Moreover, the distribution curves of the mechanical units are similar to the distribution curves of particles and aggregates obtained by electron microscopy reported in the literature. Evaluation by means of fractal analysis led to fractal dimensions for the mechanical units. It could be shown in the present case that the fractal dimension D≈1.24 of the mechanical units in the range of submicrons up to several hundred microns is in good agreement with that of the filler aggregates proposed in the literature. Furthermore, D is constant over a wide range of about 6 decades in area scale starting from aggregates up to the size of agglomerates. This leads to the conclusion that the local arrangement of the filler ensembles seems to be self-similar from the smallest scale of aggregation of particles up to the largest formation observed by indentation testing on the millimeter scale. Received: 15 May 2001 Accepted: 18 August 2001  相似文献   

3.
Most vacuum balances used today are electromagnetically compensating beam balances with sensitivities down to the nanogram range. Deflection sensors operate either according to the optoelectric or the electromagnetic method. One type of UHV balance is equipped with magnetic sample suspension. For special tasks, quartz spring balances and crystal oscillators are available. Beam balances in the microgram and milligram ranges are also used in thermogravimetric and sorption measuring apparatus. Instruments and manufacturers are compiled in tables.  相似文献   

4.
Impact and electric spark sensitivities of energetic compounds are two important sensitivity parameters, which are closely related to many accidents in working places. In contrast to electric spark sensitivity, impact sensitivity can be easily measured. A new simple method is introduced to correlate electric spark and impact sensitivities of nitroaromatic compounds. Two correcting functions are used to consider several molecular moieties for reliable prediction of electric spark sensitivity through the measured or estimated impact sensitivity of nitroaromatics. The model is optimized using a set of 28 CHNO polynitroaromatic explosives and then it is tested for some nitroaromatics containing the other atoms such as sulfur. The predicted electric sensitivities of the new method are also compared with the reported results of a new quantum mechanical approach. For 22 CHNO nitroaromatics, quantum mechanical calculations are within ±3.0 J of 18 measured values and more than ±3.0 J for remaining 4 experimental data. Meanwhile, the predicted results of the method are less than ±3.0 J for 28 CHNO nitroaromatics. The root‐mean‐square (rms) deviations of the new model and quantum mechanical are also 1.55 and 2.51 J, respectively.  相似文献   

5.
6.
The National Physical Laboratory γ-ionization chamber has been used for the measurement of chemical yield by re-irradiation in a method for the determination of arsenic by neutron activation analysis. Satisfactory accuracy and a precision of 1% were obtained with a single reading. Discrimination against other radioisotopes is achieved by irradiating for a short time and measuring at a total decay time of one mean life of the radionuclide to be determined; the resulting discrimination factor is given as a function of the half-life ratio. Maximum sensitivities for 66 elements with γ-emitting thermal neutron capture products were calculated for irradiation and decay times both equal to one half-life, and it is shown that the sensitivity for shorter irradiations at the selected time of measurement is a linear function of the irradiation time. More than a dozen elements were found suitable for determination at the milligram level by neutron activation followed by γ-ionization chamber measurement. The error from interfering elements can be directly estimated from their expected concentrations by means of the calculated sensitivities and discrimination factors presented in the paper.  相似文献   

7.
Electric spark and impact sensitivities of nitramine energetic compounds are two important sensitivity parameters, which are closely related to many accidents in working places. For nitramines, in contrast to electric spark sensitivity, their impact sensitivity can be easily measured or predicted by various methods. A new approach is introduced to correlate electric spark and impact sensitivities of nitramine energetic compounds by the use of three structural parameters. The predicted results of the novel model for 20 nitramines are compared with two of the best available models, which are based on complex quantum mechanical approach and the measured values of activation energies of thermolysis. The root‐mean‐square (rms) and maximum deviations of the new model are 1.06 and 2.41 J, respectively. For further 14 nitramines, where the measured electric spark or impact sensitivities were not available, the estimated electric spark sensitivities by the new model are close to those predicted based on experimental data of activation energies of thermolysis.  相似文献   

8.
A sensitivity analysis of bulk water thermodynamics is presented in an effort to understand the relation between qualitative features of molecular potentials and properties that they predict. The analysis is incorporated in molecular dynamics simulations and investigates the sensitivity of the Helmholtz free energy, internal energy, entropy, heat capacity, pressure, thermal pressure coefficient, and static dielectric constant to components of the potential rather than the parameters of a given functional form. The sensitivities of the properties are calculated with respect to the van der Waals repulsive and the attractive parts, plus short- and long-range Coulomb parts of three four site empirical water potentials: TIP4P, Dang-Chang and TTM2R. The polarization sensitivity is calculated for the polarizable Dang-Chang and TTM2R potentials. This new type of analysis allows direct comparisons of the sensitivities for different potentials that use different functional forms. The analysis indicates that all investigated properties are most sensitive to the van der Waals repulsive, the short-range Coulomb and the polarization components of the potentials. When polarization is included in the potentials, the magnitude of the sensitivity of the Helmholtz free energy, internal energy, and entropy with respect to this part of the potential is comparable in magnitude to the other electrostatic components. In addition similarities in trends of observed sensitivities for nonpolarizable and polarizable potentials lead to the conclusion that the complexity of the model is not of critical importance for the calculation of these thermodynamic properties for bulk water. The van der Waals attractive and the long-range Coulomb sensitivities are relatively small for the entropy, heat capacity, thermal pressure coefficient and the static dielectric constant, while small changes in any of the potential contributions will significantly affect the pressure. The analysis suggests a procedure for modification of the potentials to improve predictions of thermodynamic properties and we demonstrate this general approach for modifying potentials for one of the potentials.  相似文献   

9.
《Analytical letters》2012,45(7):445-450
Abstract

Tellurium has been determined at milligram and submilligram levels in the presence of uranium by a strictly instrumental photon activation 121 analysis procedure. The 575 keV gamma ray of Te was measured. At a decay time of three weeks, this gamma ray peak was interference-free. As little as 0.4 mg of tellurium was determined and the method evidences that sensitivity would increase with irradiation time.  相似文献   

10.
Spiropyran (SP) mechanophores (mechanochemically reactive units) can impart the unique functionality of visual stress detection to polymers and have potential for use in smart materials with self-sensing capabilities. These color-generating mechanophores were incorporated into polyurethane via step growth polymerization. Polyurethane, which is inherently a versatile engineering polymer, possesses an optimized balance of mechanical toughness and elasticity to allow for investigation of the kinetics of the mechanochemical response of the SP mechanophore in the bulk polymer via fluorescence and absorbance measurements. The stress-induced 6-π electrocyclic ring-opening to the colored merocyanine (MC) form of the mechanophore was quantified by measuring the change in absorbance of the polymer, while it was held at constant strain. The closing kinetics of the mechanophore was also studied by fluorescence imaging. Finally, the effects of mechanical strain on the equilibrium between the SP and MC forms are reported and discussed.  相似文献   

11.
Electric spark sensitivity and shock sensitivity based small‐scale gap test for nitramine energetic compounds are two important sensitivity parameters, which are needed for assessment of their safety in working places. A novel method is introduced for reliable prediction of electric spark or shock sensitivity of a desired nitramine energetic compound when reliable data for one of the sensitivity is available. A novel correlation with a high value of correlation coefficient (R2 = 0.998) is derived between electric spark and shock sensitivities of 20 cyclic and acyclic nitramines. For these nitramines, the predicted results of electric spark sensitivities of the novel model are compared with two of the best available models. The root‐mean‐square (rms) and maximum deviations of the new model are 0.20 and 0.51 J, respectively, which are much less than two comparative methods. The reliability of the new method for prediction of electric spark sensitivity of further 14 nitramines is also compared with one of the best available methods, where the measured electric spark or shock sensitivities were not available in literature.  相似文献   

12.
A new approach to the multivariate sensitivity concept based on the determination of the capability of discrimination of a method of analysis is shown. Thus the analytical sensitivity is defined in this work by the analyte concentration that a analytical method is able to discriminate, which implies the estimation of the ‘false noncompliance’ and ‘false compliance’. In this approach the estimation of the multivariate analytical sensitivity is independent of scale factors and calibration models, and allows one to study the behavior of a analytical method for several concentrations and matrix. The estimation of this parameter in the simultaneous determination of selenium, copper, lead and cadmium by stripping voltammetry when using soft calibration is carried out, showing that different multivariate analytical sensitivities are obtained for each metal.  相似文献   

13.
Transport properties of chemical species are required for many combustion models. A sensitivity analysis is conducted to assess the significance of transport properties and their underlying molecular parameterizations for atmospheric pressure premixed laminar flames for three different fuels and two different approaches to transport property calculations. The analysis is performed at both the macroscopic level of Arrhenius A-factors and transport coefficients as well as at the molecular scale. First- and second-order sensitivities of reactant, intermediate, and product species concentrations, temperature, and flame velocity were calculated with respect to various parameters, all within the mixture approximation using ADIFOR 2.0, a software package that supports exact differentiation. Parameters considered were the binary diffusion coefficients, pure species thermal conductivity coefficients, and thermal diffusion ratios. The more fundamental molecular parameters: collision diameters, well depths, dipole moments, polarizabilities, and the rotational relaxation collision numbers were also considered. Influential transport properties are found to be as important in flame modeling as influential reaction rates, and both should be taken into account when building chemical mechanisms. Transport parameter importance was found to vary according to the independent variable being considered and the flame type. Magnitudes of sensitivities appear to be more influenced by the underlying molecular parameters than the approach used to compute the transport properties. The number of significant sensitivities to transport parameters increases for the progression: flame temperature, flame velocity, reactant species, product species, and intermediate radical species. Many dependent variables have significant sensitivities to the pure species thermal conductivities of N2, O2, and the fuel. At the molecular level, large sensitivities to the collision diameters of several species are also observed, but significant sensitivity to well depths, although observed is less and more rare. Large sensitivities are not observed to the rotational relaxation collision number, the dipole moment, or to the molecular polarizability. Second-order sensitivities are significant for a number of dependent variables. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 538–553, 2005  相似文献   

14.
In this study, the solid-phase extraction (SPE) method combined with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method is evaluated for the analysis of liquid-phase volatile organic compounds (LVOCs). Calibration experiments were performed on a number of polar and nonpolar LVOCs (including aromatic compounds, ester, ketones, and alcohol) as a function of solution pH. If the relative sensitivity of the SPE-TD-GC-MS method is compared between different VOCs across a wide range of pH (1, 4, 7, 10, and 13), optimum sensitivities for most VOCs are derived at the neutral pH. However, there were some exceptions to the general trend with the maximum sensitivity occurring either at a moderately basic pH (methyl isobutyl ketone and butyl acetate) or extremely acidic conditions (isobutyl alcohol). It was also noticed that the relative ordering of sensitivity was changed, as the pH conditions of the solution vary. The use of internal standard (IS: chlorobenzene) resulted in a notable improvement in both relative sensitivity and reproducibility for most compounds.  相似文献   

15.
Theoretical sensitivities cannot replace calibration. Nevertheless, they are important for standardless atomic absorption determinations, and especially, for optimization of experimental conditions. Starting with fundamental processes involved in the interaction of electromagnetic radiation with the matter, a simple sensitivity formula was derived. $$S_A = [dA(\lambda _0 )/dc_A ]_0 = K_n (b/D)(\rho /M_A )\lambda _0 G$$ The sensitivityS A is the initial slope of the calibration curve absorbanceA0) measured at the centre λ0 of the resonance line vs. concentrationc A of the element to be determined (analyteA). The relative atomic massM A of the analyte and the density ? of the solutions need no further discussion here. The ratio (b/D) of the absorption path length b to the dilution factor determines the sensitivity of determinations by AAS to a high degree and. will be discussed in detail. The numerical factorK n depends on the concentration unit and the system of units (CGS or SI) used for the physical constant involved. The former were always used in earlier works in the field of atomic spectroscopy. In order to make a connection more easily between classic (CGS) and modern (SI) formulations, the most important equations are given in both systems of units. The other important factors are combined in the group G-factors of dimension one. The comparison of the theoretical and experimental sensitivities may be transformed to the comparison of theoretical and experimental G-values. Whereas the comparison of sensitivities is always limited to an experimental set-up, the comparison ofG-values is released from this “ballast” and therefore will be preferred here. It is proposed that experimentalG-values are computed from experimental sensitivities and used for compilations in the future, because they are more precise and accurate than their cofactors.  相似文献   

16.
The use of cresol red (CR) indicator for determination of freshwater pH is evaluated. Ionic strength effects and indicator pH perturbation are discussed and quantified using theoretical and empirical approaches. Spectrophotometric and potentiometric methods are directly compared by repeated analyses of a low ionic strength pH buffer. The mean and standard deviation of the two methods were 7.618±0.008 (spectrophotometric) and 7.484±0.040 (potentiometric) (N=18) with systematic errors of 0.003 and 0.137 pH units relative to the true pH (7.621). Field data from an alkaline river (pH∼7.8-8.8) show that measurement reproducibility is better than 0.01 pH units, making it possible to resolve very small spatial and temporal changes in riverine pH. Uncertainty in the indicator apparent dissociation constant limits the accuracy of the pH measurement to ∼0.05 pH units. An alternative method for estimating the dissociation constant, based on calculation of pH from two other carbonate parameters, is proposed.  相似文献   

17.
《Electroanalysis》2006,18(12):1153-1158
We demonstrate a facile fabrication method to make chemical gas sensors using single‐walled carbon nanotubes (SWNT) electrochemically functionalized with polyaniline (PANI). The potential advantage of this method is to enable targeted functionalization with different materials to allow for creation of high‐density individually addressable nanosensor arrays. PANI‐SWNT network based sensors were tested for on‐line monitoring of ammonia gas. The results show a superior sensitivity of 2.44% ΔR/R per ppmv NH3 (which is more than 60 times higher than intrinsic SWNT based sensors), a detection limit as low as 50 ppbv, and good reproducibility upon repeated exposure to 10 ppmv NH3. The typical response time of the sensors at room temperature is on the order of minutes and the recovery time is a few hours. Higher sensitivities were observed at lower temperatures. These results indicate that electrochemical functionalization of SWNTs provides a promising new method of creating highly advanced nanosensors with improved sensitivity, detection limit, and reproducibility.  相似文献   

18.
The selectivity and sensitivity of methanol chemical ionization mass spectrometry was studied for selected heteroatom-containing compounds chosen as representative of trace contaminants in middle distillate fuels. At high methanol pressures, the selectivity for these species, relative to n- butylbenzene, was found to improve by factors of 2–4 over that observed with methane chemical ionization. At lower methanol pressures, the sensitivities for these components exhibited a two- to eleven-fold increase over that observed with methane.  相似文献   

19.
《Analytical letters》2012,45(12):2159-2174
Abstract

Sulfur dioxide was detected and determined in air by a piezoelectric quartz crystal sensor coated with 4-aminoantipyrine 1-hydroxyetil-2-heptadecenyl imidazol (amine 220) solution (1:1 v/v in chloroform). The analytical response curve is linear over the concentration range from 0.70 to 5.0 ppm of SO2. Good linearities (r = 0.9990, 0.9995 and 0.9968) and sensitivities (18.0, 33.4 and 50.7 Hz/ppm) were found, respectively for exposure times of 30, 60 and 90 seconds. The sensor can be used for more than six months without loss in sensitivity and presented good reversibility and reproducibility. Among some possible interferents tested, only nitrogen dioxide and moisture caused major frequency changes.  相似文献   

20.
The basic principle of comparing the sample mass with the mass of a reference body in equilibrium gives the equal-armed beam balance a unique accuracy. Main parameters characterising the suitability of the instrument are measuring range, resolution and relative sensitivity (resolution/maximum load). The historical development of the values of these parameters achieved depended strongly on the practical need in those times. Technically unfavourable scales of the oldest Egyptian dynasties (~3000 BC) could resolve mass differences of 1 g and had a relative sensitivity of at least 10–3. More sophisticated instruments from the 18th Dynasty (~1567–1320 BC) achieved a relative sensitivity of 10–4 independent of the size of the instrument. In 350 BC Aristotle clarified the theory of the lever and at about 250 BC Archimedes used the balance for density determinations of solids. The masterpiece of a hydrological balance was Al Chazini’s 'Balance of Wisdom’ built about 1120. Its relative sensitivity was 2⋅10–5. Real progress took place when scientists like Lavoisier (1743–1794) founded modern chemistry. At the end of the 19th century metrological balances reached a relative sensitivity of 10–9 with a maximum load of several kilogrammes. That seems to be the high end of sensitivity of the classical mechanical beam balance with knife edges. Improvements took place by electrodynamic compensation (Emich, Gast). In 1909 Ehrenhaft and Millikan could weigh particles of 10–15 g by means of electrostatic suspension. In 1957 Sauerbrey invented the oscillating quartz crystal balance. By observing the frequency shift of oscillating carbon nanotubes or of silica nanorods, masses or mass changes in the attogram or zeptogram have been observed recently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号