首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Routine structure prediction of new folds is still a challenging task for computational biology. The challenge is not only in the proper determination of overall fold but also in building models of acceptable resolution, useful for modeling the drug interactions and protein-protein complexes. In this work we propose and test a comprehensive approach to protein structure modeling supported by sparse, and relatively easy to obtain, experimental data. We focus on chemical shift-based restraints from NMR, although other sparse restraints could be easily included. In particular, we demonstrate that combining the typical NMR software with artificial intelligence-based prediction of secondary structure enhances significantly the accuracy of the restraints for molecular modeling. The computational procedure is based on the reduced representation approach implemented in the CABS modeling software, which proved to be a versatile tool for protein structure prediction during the CASP (CASP stands for critical assessment of techniques for protein structure prediction) experiments (see http://predictioncenter/CASP6/org). The method is successfully tested on a small set of representative globular proteins of different size and topology, including the two CASP6 targets, for which the required NMR data already exist. The method is implemented in a semi-automated pipeline applicable to a large scale structural annotation of genomic data. Here, we limit the computations to relatively small set. This enabled, without a loss of generality, a detailed discussion of various factors determining accuracy of the proposed approach to the protein structure prediction.  相似文献   

2.
The sequence-specific assignment of resonances is still the most time-consuming procedure that is necessary as the first step in high-resolution NMR studies of proteins. In many cases a reliable three-dimensional (3D) structure of the protein is available, for example, from X-ray spectroscopy or homology modeling. Here we introduce the st2nmr program that uses the 3D structure and Nuclear Overhauser Effect spectroscopy (NOESY) peak list(s) to evaluate and optimize trial sequence-specific assignments of spin systems derived from correlation spectra to residues of the protein. A distance-dependent target function that scores trial assignments based on the presence of expected NOESY crosspeaks is optimized in a Monte Carlo fashion. The performance of the program st2nmr is tested on real NMR data of an alpha-helical (cytochrome c) and beta-sheet (lipocalin) protein using homology models and/or X-ray structures; it succeeded in completely reproducing the correct sequence-specific assignments in most cases using 2D and/or 15N/13C Nuclear Overhauser Effect (NOE) data. Additionally to amino acid residues the program can also handle ligands that are bound to the protein, such as heme, and can be used as a complementary tool to fully automated assignment procedures.  相似文献   

3.
4.
In many cases of protein structure determination by NMR a high-quality structure is required. An important contribution to structural precision is stereospecific assignment of magnetically nonequivalent prochiral methylene and methyl groups, eliminating the need for introducing pseudoatoms and pseudoatom corrections in distance restraint lists. Here, we introduce the stereospecific assignment program that uses the resonance assignment, a preliminary 3D structure and 2D and/or 3D nuclear Overhauser effect spectroscopy peak lists for stereospecific assignment. For each prochiral group the algorithm automatically calculates a score for the two different stereospecific assignment possibilities, taking into account the presence and intensity of the nuclear Overhauser effect (NOE) peaks that are expected from the local environment of each prochiral group (i.e., the close neighbors). The performance of the algorithm has been tested and used on NMR data of alpha-helical and beta-sheet proteins using homology models and/or X-ray structures. The program produced no erroneous stereospecific assignments provided the NOEs were carefully picked and the 3D model was sufficiently accurate. The set of NOE distance restraints produced by nmr2st using the results of the SSA module was superior in generating good-quality ensembles of NMR structures (low deviations from upper limits in conjunction with low root-mean-square-deviation values) in the first round of structure calculations. The program uses a novel approach that employs the entire 3D structure of the protein to obtain stereospecific assignment; it can be used to speed up the NMR structure refinement and to increase the quality of the final NMR ensemble even when no scalar or residual dipolar coupling information is available.  相似文献   

5.
The 20 residue long Trp‐cage is the smallest protein known, and thus has been the subject of several in vitro and in silico folding studies. Here, we report the multistate folding scenario of the miniprotein in atomic detail. We detected and characterized different intermediate states by temperature dependent NMR measurements of the 15N and 13C/15N labeled protein, both at neutral and acidic pH values. We developed a deconvolution technique to characterize the invisible—fully folded, unfolded and intermediate—fast exchanging states. Using nonlinear fitting methods we can obtain both the thermodynamic parameters (ΔHF–I, TmF–I, ΔCpF–I and ΔHI–U, TmI–U, ΔCpI–U) and the NMR chemical shifts of the conformers of the multistate unfolding process. During the unfolding of Trp‐cage distinct intermediates evolve: a fast‐exchanging intermediate is present under neutral conditions, whereas a slow‐exchanging intermediate‐pair emerges at acidic pH. The fast‐exchanging intermediate has a native‐like structure with a short α‐helix in the G11–G15 segment, whereas the slow‐exchanging intermediate‐pair presents elevated dynamics, with no detectable native‐like residue contacts in which the G11? P12 peptide bond has either cis or trans conformation. Heteronuclear relaxation studies combined with MD simulations revealed the source of backbone mobility and the nature of structural rearrangements during these transitions. The ability to detect structural and dynamic information about folding intermediates in vitro provides an excellent opportunity to gain new insights into the energetic aspects of the energy landscape of protein folding. Our new experimental data offer exceptional testing ground for further computational simulations.  相似文献   

6.
There is a pressing need for new computational tools to integrate data from diverse experimental approaches in structural biology. We present a strategy that combines sparse paramagnetic solid‐state NMR restraints with physics‐based atomistic simulations. Our approach explicitly accounts for uncertainty in the interpretation of experimental data through the use of a semi‐quantitative mapping between the data and the restraint energy that is calibrated by extensive simulations. We apply our approach to solid‐state NMR data for the model protein GB1 labeled with Cu2+‐EDTA at six different sites. We are able to determine the structure to 0.9 Å accuracy within a single day of computation on a GPU cluster. We further show that in some cases, the data from only a single paramagnetic tag are sufficient for accurate folding.  相似文献   

7.
NMR chemical shielding anisotropy tensors have been computed, employing several basis sets and the GIAO‐RHF and GIAO‐MP2 formalisms of electronic structure theory, for all the atoms of the five and nine typical backbone conformers of For‐Gly‐NH2 and For‐L ‐Ala‐NH2, respectively. Multidimensional chemical shift plots, as a function of the respective backbone fold, have been generated for both peptide models. On the 2D 1HNH15NNH and 15NNH13Cα plots the most notable feature is that at all levels of theory studied the backbone conformers cluster in different regions. Computed chemical shifts, as well as their averages, have been compared to relevant experimental values taken from the BioMagnetic Resonance Bank (BMRB). At the highest levels of theory, for all nuclei but the amide protons, deviations between statistically averaged theoretical and experimental shifts are as low as 1–3%. These results indicate that chemical shift information from selected multiple‐pulse NMR experiments (e.g., 2D‐HSQC and 3D‐HNCA) could directly be employed to extract folding information for polypeptides and proteins. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 882–900, 2000  相似文献   

8.
Solid‐state NMR spectroscopy is an emerging tool for structural studies of crystalline, membrane‐associated, sedimented, and fibrillar proteins. A major limitation for many studies is still the large amount of sample needed for the experiments, typically several isotopically labeled samples of 10–20 mg each. Here we show that a new NMR probe, pushing magic‐angle sample rotation to frequencies around 100 kHz, makes it possible to narrow the proton resonance lines sufficiently to provide the necessary sensitivity and spectral resolution for efficient and sensitive proton detection. Using restraints from such spectra, a well‐defined de novo structure of the model protein ubiquitin was obtained from two samples of roughly 500 μg protein each. This proof of principle opens new avenues for structural studies of proteins available in microgram, or tens of nanomoles, quantities that are, for example, typically achieved for eukaryotic membrane proteins by in‐cell or cell‐free expression.  相似文献   

9.
10.
A new folding intermediate of Oxytricha nova telomeric Oxy‐1.5 G‐quadruplex was characterized in aqueous solution using NMR spectroscopy, native gel electrophoresis, thermal differential spectra (TDS), CD spectroscopy, and differential scanning calorimetry (DSC). NMR experiments have revealed that this intermediate (i‐Oxy‐1.5) exists in two symmetric bimolecular forms in which all guanine bases are involved in GG N1‐carbonyl symmetric base pairs. Kinetic analysis of K+‐induced structural transitions shows that folding of Oxy‐1.5 G‐quadruplex from i‐Oxy‐1.5 is much faster and proceeds through less intermediates than folding from single strands. Therefore, a new folding pathway of Oxy‐1.5 G‐quadruplex is proposed. This study provides evidence that G‐rich DNA sequences can self‐assemble into specific pre‐organized DNA structures that are predisposed to fold into G‐quadruplex when interacting with cations such as potassium ions.  相似文献   

11.
The three‐dimensional solution conformation of teicoplanin aglycone was determined using NMR spectroscopy. A combination of NOE and dihedral angle restraints in a DMSO solvation model was used to calculate an ensemble of structures having a root mean square deviation of 0.17 Å. The structures were generated using systematic searches of conformational space for optimal satisfaction of distance and dihedral angle restraints. Comparison of the NMR‐derived structure of teicoplanin aglycone with the X‐ray structure of a teicoplanin aglycone analog revealed a common backbone conformation with deviation of two aromatic side chain substituents. Experimentally determined backbone 13C chemical shifts showed good agreement with those computed at the density functional level of theory, providing a cross validation of the backbone conformation. The flexible portion of the molecule was consistent with the region that changes conformation to accommodate protein binding. The results showed that a hydrogen‐bonded DMSO molecule in combination with NMR‐derived restraints together enabled calculation of structures that satisfied experimental data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Nuclear magnetic resonance (NMR) is a powerful tool to interrogate protein structure and dynamics residue by residue. However, the prerequisite chemical‐shift assignment remains a bottleneck for large proteins due to the fast relaxation and the frequency degeneracy of the 13Cα nuclei. Herein, we present a covariance NMR strategy to assign the backbone chemical shifts by using only HN(CO)CA and HNCA spectra that has a high sensitivity even for large proteins. By using the peak linear correlation coefficient (LCC), which is a sensitive probe even for tiny chemical‐shift displacements, we correctly identify the fidelity of approximately 92 % cross‐peaks in the covariance spectrum, which is thus a significant improvement on the approach developed by Snyder and Brüschweiler (66 %) and the use of spectral derivatives (50 %). Thus, we calculate the 4D covariance spectrum from HN(CO)CA and HNCA experiments, in which cross‐peaks with LCCs above a universal threshold are considered as true correlations. This 4D covariance spectrum enables the sequential assignment of a 42 kDa maltose binding protein (MBP), in which about 95 % residues are successfully assigned with a high accuracy of 98 %. Our LCC approach, therefore, paves the way for a residue‐by‐residue study of the backbone structure and dynamics of large proteins.  相似文献   

13.
G‐protein‐coupled receptors (GPCRs) exist in conformational equilibrium between active and inactive states, and the former population determines the efficacy of signaling. However, the conformational equilibrium of GPCRs in lipid bilayers is unknown owing to the low sensitivities of their NMR signals. To increase the signal intensities, a deuteration method was developed for GPCRs expressed in an insect cell/baculovirus expression system. The NMR sensitivities of the methionine methyl resonances from the β2‐adrenergic receptor (β2AR) in lipid bilayers of reconstituted high‐density lipoprotein (rHDL) increased by approximately 5‐fold upon deuteration. NMR analyses revealed that the exchange rates for the conformational equilibrium of β2AR in rHDLs were remarkably different from those measured in detergents. The timescales of GPCR signaling, calculated from the exchange rates, are faster than those of receptor tyrosine kinases and thus enable rapid neurotransmission and sensory perception.  相似文献   

14.
Both far‐ and near‐UV electronic circular dichroism (ECD) spectra have bands sensitive to thermal unfolding of Trp and Tyr residues containing proteins. Beside spectral changes at 222 nm reporting secondary structural variations (far‐UV range), Lb bands (near‐UV range) are applicable as 3D‐fold sensors of protein's core structure. In this study we show that both Lb(Tyr) and Lb(Trp) ECD bands could be used as sensors of fold compactness. ECD is a relative method and thus requires NMR referencing and cross‐validation, also provided here. The ensemble of 204 ECD spectra of Trp‐cage miniproteins is analysed as a training set for “calibrating” Trp?Tyr folded systems of known NMR structure. While in the far‐UV ECD spectra changes are linear as a function of the temperature, near‐UV ECD data indicate a non‐linear and thus, cooperative unfolding mechanism of these proteins. Ensemble of ECD spectra deconvoluted gives both conformational weights and insight to a protein folding?unfolding mechanism. We found that the Lb293 band is reporting on the 3D‐structure compactness. In addition, the pure near‐UV ECD spectrum of the unfolded state is described here for the first time. Thus, ECD folding information now validated can be applied with confidence in a large thermal window (5≤T≤85 °C) compared to NMR for studying the unfolding of Trp?Tyr residue pairs. In conclusion, folding propensities of important proteins (RNA polymerase II, ubiquitin protein ligase, tryptase‐inhibitor etc.) can now be analysed with higher confidence.  相似文献   

15.
Nuclear magnetic resonance (NMR) spectroscopy provides a range of powerful techniques for determining the structures and the dynamics of proteins. The high-resolution determination of the structures of protein-protein complexes, however, is still a challenging problem for this approach, since it can normally provide only a limited amount of structural information at protein-protein interfaces. We present here the determination using NMR chemical shifts of the structure (PDB code 2K5X) of the cytotoxic endonuclease domain from bacterial toxin colicin (E9) in complex with its cognate immunity protein (Im9). In order to achieve this result, we introduce the CamDock method, which combines a flexible docking procedure with a refinement that exploits the structural information provided by chemical shifts. The results that we report thus indicate that chemical shifts can be used as structural restraints for the determination of the conformations of protein complexes that are difficult to obtain by more standard NMR approaches.  相似文献   

16.
Short peptides that fold into β‐hairpins are ideal model systems for investigating the mechanism of protein folding because their folding process shows dynamics typical of proteins. We performed folding, unfolding, and refolding molecular dynamics simulations (total of 2.7 μs) of the 10‐residue β‐hairpin peptide chignolin, which is the smallest β‐hairpin structure known to be stable in solution. Our results revealed the folding mechanism of chignolin, which comprises three steps. First, the folding begins with hydrophobic assembly. It brings the main chain together; subsequently, a nascent turn structure is formed. The second step is the conversion of the nascent turn into a tight turn structure along with interconversion of the hydrophobic packing and interstrand hydrogen bonds. Finally, the formation of the hydrogen‐bond network and the complete hydrophobic core as well as the arrangement of side‐chain–side‐chain interactions occur at approximately the same time. This three‐step mechanism appropriately interprets the folding process as involving a combination of previous inconsistent explanations of the folding mechanism of the β‐hairpin, that the first event of the folding is formation of hydrogen bonds and the second is that of the hydrophobic core, or vice versa.  相似文献   

17.
High‐resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non‐uniform sampling (NUS) of 3D heteronuclear‐resolved [1H,1H]‐NOESY data yielded two‐ to three‐fold savings of instrument time for structure determinations of soluble proteins. With the 152‐residue protein NP_372339.1 from Staphylococcus aureus and the 71‐residue protein NP_346341.1 from Streptococcus pneumonia we show that high‐quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data.  相似文献   

18.
Long‐range pseudo‐contact NMR shifts (PCSs) provide important restraints for the structure refinement of proteins when a paramagnetic metal center is present, either naturally or introduced artificially. Here we show that ab initio quantum‐chemical methods and a modern version of the Kurland–McGarvey approach for paramagnetic NMR (pNMR) shifts in the presence of zero‐field splitting (ZFS) together provide accurate predictions of all PCSs in a metalloprotein (high‐spin cobalt‐substituted MMP‐12 as a test case). Computations of 314 13C PCSs using g‐ and ZFS tensors based on multi‐reference methods provide a reliable bridge between EPR‐parameter‐ and susceptibility‐based pNMR formalisms. Due to the high sensitivity of PCSs to even small structural differences, local structures based either on X‐ray diffraction or on various DFT optimizations could be evaluated critically by comparing computed and experimental PCSs. Many DFT functionals provide insufficiently accurate structures. We also found the available 1RMZ PDB X‐ray structure to exhibit deficiencies related to binding of a hydroxamate inhibitor. This has led to a newly refined PDB structure for MMP‐12 (5LAB) that provides a more accurate coordination arrangement and PCSs.  相似文献   

19.
Solid‐state nuclear magnetic resonance (NMR) spectroscopy has been successfully applied to elucidate the atomic‐resolution structures of insoluble proteins. The major bottleneck is the difficulty to obtain valuable long‐distance structural information. Here, we propose the use of distance restraints as long as 32 Å, obtained from the quantification of transverse proton relaxation induced by a methanethiosulfonate spin label (MTSL). Combined with dipolar proton–proton distance restraints, this method allows us to obtain protein structures with excellent precision from single spin‐labeled 1 mg protein samples using fast magic angle spinning.  相似文献   

20.
Enzyme catalysis relies on conformational plasticity, but structural information on transient intermediates is difficult to obtain. We show that the three‐dimensional (3D) structure of an unstable, low‐abundance enzymatic intermediate can be determined by nuclear magnetic resonance (NMR) spectroscopy. The approach is demonstrated for Staphylococcus aureus sortase A (SrtA), which is an established drug target and biotechnological reagent. SrtA is a transpeptidase that converts an amide bond of a substrate peptide into a thioester. By measuring pseudocontact shifts (PCSs) generated by a site‐specific cysteine‐reactive paramagnetic tag that does not react with the active‐site residue Cys184, a sufficient number of restraints were collected to determine the 3D structure of the unstable thioester intermediate of SrtA that is present only as a minor species under non‐equilibrium conditions. The 3D structure reveals structural changes that protect the thioester intermediate against hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号