首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work proposes a novel biomimetic sensor for the potentiometric transduction of rivastigmine based on molecularly imprinted polymer (MIP). Using the Taguchi method, this study analyzed the optimum conditions for preparing the MIP‐based membranes. The rank order of each controllable factor was also determined. MIP‐based membranes exhibited a Nernstian response (30.7±1.1 mV decade?1) in a concentration range from 1.0×10?5 to 1.0×10?2 mol L?1 with a LOD of 6.3×10?6 mol L?1. The sensor was successfully applied to the determination of rivastigmine concentrations in human serum, plasma, urine, rat brain and tablets.  相似文献   

2.
This work explores the differences between two GCMS instruments for the determination of amphetamine and methylamphetamine extracted from water samples (ultra pure water and river water) without the necessity for derivatization. The instruments contained different generations of gas chromatograph and mass selective detector components and revealed significantly different results when presented with the same samples. The extraction methodology also compared two SPE systems. The extraction efficiency of commercially available molecular imprinted polymers as a sorbent in SPE was compared with commonly used hydrophilic balance sorbent. Molecular imprinted polymers provided excellent recoveries (81 ± 2% and 108 ± 3% at 30 μg L?1, and 94 ± 2% and 94 ± 2% at 200 μg L?1 for amphetamine and methylamphetamine, respectively). The best LOD obtained was sufficient for the determination of both drugs extracted from river water (0.029 ± 0.003 and 0.015 ± 0.004 μg L?1 for amphetamine and methylamphetamine, respectively). These were comparable to literature values obtained through conventional extraction and analysis using LC‐MS/MS but had the advantage of being achieved using an underivatized GCMS method.  相似文献   

3.
IntroductionSincethepiezoelectricbulkacousticwave (BAW)sen sorswereappliedinliquidphaseinthe 1980s ,manypapershavebeenreported .1,2 However,theapplicationofBAWsen sorsbasedonmasseffectislimitedbecauseoflackofthespecialselectivitytotheanalyte.Variousmethodshavebeenproposedtosolvethisproblem ,especiallytheapplicationofthebiomaterials .3Unfortunately ,theresultwasnotsogoodasexpected,duetotheinstinctdisadvantageofthebiomateri als ,e.g .,poorstability ,shortlifespan ,althoughpossess inghighselec…  相似文献   

4.
A molecularly imprinted polymer was synthesized and applied as a sorbent in the solid‐phase extraction device. The imprinted polymer was characterized by fourier‐transform infrared spectroscopy and scanning electron microscope. The results revealed that imprinted polymer possess sensitive selectivity and reliable adsorption properties for five NSAIDs. The imprinted polymer was successfully applied to the pre‐concentration for five NSAIDs in different water samples prior to UPLC‐MS/MS. In the early studies, several factors were investigated, including pH adjustment, the kind of elution solvent and the volume of elution solvent. Finally, we found that the pH 5 and an aliquot of 2 mL methanol were suitable for the water samples. The limits of detection and limits of quantitation of five nonsteroidal anti‐inflammatory drugs varied from 0.007 to 0.480 μg L−1 and 0.03 to 1.58 μg L−1, respectively. The spiking recoveries of the target analytes were 50.33‐127.64% at the levels of 0.2 μg L−1, 2 μg L−1 and 5 μg L−1. The precision and accuracy of this method showed a great increase compared with traditional solid‐phase extraction. The developed method was successfully applied to extraction and analysis of NSAIDs in different water samples with satisfactory results which could help us better understand their environmental fate and risk to ecological health.  相似文献   

5.
An efficient molecularly imprinted solid‐phase extraction protocol was developed for the separation of dopamine (DA) from human urine. After successful validation of the analytical method using high‐performance liquid chromatography coupled with fluorescence detection, a new strategy for the selective determination of DA in the presence of norepinephrine and epinephrine in human urine was presented. In the proposed protocol, the LODs and quantification for DA were 166 ± 36 and 500 ± 110 nmol/L, respectively, and the total recoveries of DA in the range of 1–15 μmol/L varied between 98.3 and 101.1%. DA was detected in the real urine samples at the level of 47–167 μg/L (0.250–0.895 μmol/L). The superiority of the novel analytical strategy was shown by comparison with the results obtained for a commercially available imprinted sorbent.  相似文献   

6.
In this study, we have developed a method to assess adenosine 5?‐triphosphate by adsorptive extraction using surface adenosine 5′‐triphosphate‐imprinted polymer over polystyrene nanoparticles (412 ± 16 nm) for selective recognition/separation from urine. Molecularly imprinted polymer was synthesized by emulsion copolymerization reaction using adenosine 5′‐triphosphate as a template, functional monomers (methacrylic acid, N‐isopropyl acrylamide, and dimethylamino ethylmethacrylate) and a crosslinker, methylenebisacrylamide. The binding capacities of imprinted and non‐imprinted polymers were measured using high‐performance liquid chromatography with UV detection with a detection limit of 1.6 ± 0.02 µM of adenosine 5′‐triphosphate in the urine. High binding affinity (QMIP, 42.65 µmol/g), and high selectivity and specificity to adenosine 5′‐triphosphate compared to other competitive nucleotides including adenosine 5?‐diphosphate, adenosine 5?‐monophosphate, and analogs such as adenosine, adenine, uridine, uric acid, and creatinine were observed. The imprinting efficiency of imprinted polymer is 2.11 for urine (QMIP, 100.3 µmol/g) and 2.51 for synthetic urine (QMIP, 48.5 µmol/g). The extraction protocol was successfully applied to the direct extraction of adenosine 5′‐triphosphate from spiked human urine indicating that this synthesized molecularly imprinted polymer allowed adenosine 5′‐triphosphate to be preconcentrated while simultaneously interfering compounds were removed from the matrix. These submicron imprinted polymers over nano polystyrene spheres have a potential in the pharmaceutical industries and clinical analysis applications.  相似文献   

7.
In this article, for the first time, the analytical method for determination of a novel antagonist of A2A adenosine receptors (8‐(4‐methoxyphenyl)‐4‐oxo‐4,6,7,8‐tetrahydroimidazo[2,1‐c][1,2,4]triazine‐3‐carbohydrazide, namely IMT), which can be used as a drug for liver diseases, was presented. For this purpose a commercially available boron‐doped diamond electrode (BDDE) in combination with differential pulse voltammetry (DPV) was applied. It was found by cyclic voltammetry (CV) that IMT displays at BDDE, as a sensor, two well‐defined oxidation peaks at potentials of 0.81 and 1.18 V and one reduction peak at 1.1 V vs. Ag/AgCl in 0.1 mol L?1 acetate buffer (pH 4.5±0.1). The oxidation and reduction mechanism of IMT was proposed. The developed DPV method allowed the successful determination of IMT in the range of 0.05–50 μmol L?1 with detection limit equal to 0.0094 μmol L?1 and without any chemical modifications and electrochemical pretreatment of the electrode surface. The proposed procedure allows the determination of IMT in vitro directly from urine samples.  相似文献   

8.
A new cetyl‐alcohol‐reinforced hollow fiber solid/liquid‐phase microextraction (CA–HF–SLPME) followed by high‐performance liquid chromatography–diode array detection (HPLC–DAD) method was developed for simultaneous determination of ezetimibe and simvastatin in human plasma and urine samples. To prepare the CA–HF–SLPME device, the cetyl‐alcohol was immobilized into the pores of a 2.5 cm hollow fiber micro‐tube and the lumen of the micro‐tube was filled with 1‐octanol with the two ends sealed. Afterwards, the prepared device was introduced into 10 mL of the sample solution containing the analytes with agitation. Under optimized conditions, calibration curves plotted in spiked plasma and urine samples were linear in the ranges of 0.363–25/0.49–25 μg L?1 for ezetimibe/simvastatin and 0.193–25/0.312–25 μg L?1 for ezetimibe/simvastatin in plasma and urine samples, respectively. The limit of detection was 0.109/0.174 μg L?1 for ezetimibe/simvastatin in plasma and 0.058/0.093 μg L?1 for ezetimibe/simvastatin in urine. As a potential application, the proposed method was applied to determine the concentration of selected analytes in patient plasma and urine samples after medication and satisfactory results were achieved. In comparison with reference methods, the CA–HF–SLPME–HPLC–DAD method demonstrates considerable potential in the biopharmaceutical analysis of selected drugs.  相似文献   

9.
A simple, sensitive, and selective molecularly imprinted solid‐phase extraction and spectrophotometric method has been developed for the clean‐up and preconcentration of indapamide from human urine. Molecularly imprinted polymers were prepared by a non‐covalent imprinting approach using indapamide as a template molecule, 2‐(trifluoromethyl) acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a crosslinker, N,N‐azobisisobutyronitrile as a thermal initiator and acetonitrile as a porogenic solvent. A non‐imprinted polymer was also prepared in the same way, but in the absence of template. Molecularly imprinted polymer and non‐imprinted polymer sorbents were dry‐packed into solid‐phase extraction cartridges. Eluates from cartridges were analyzed using a spectrophotometer for the determination of indapamide by referring to the calibration curve in the range 0.14–1.50 μg/mL. Preconcentration factor, limit of detection, and limit of quantification were 16.30, 0.025 μg/mL, and 0.075 μg/mL, respectively. A relatively high imprinting factor (9.3) was also achieved and recovery values for the indapamide spiked into human urine were in the range of 80.1–81.2%. In addition, relatively low within‐day (0.17–0.42%) and between‐day (1.1–1.4%) precision values were obtained as well. The proposed molecularly imprinted solid‐phase extraction and spectrophotometric method was successfully applied to selective extraction, preconcentration, and determination of indapamide from human urine samples.  相似文献   

10.
In this paper, a highly selective molecularly imprinted polymer (MIP) for tramadol hydrochloride, a drug used to treat moderate to severe pain, was prepared and its use as solid-phase extraction (SPE) sorbent was demonstrated. The molecularly imprinted solid-phase extraction procedure followed by high performance liquid chromatography with ultraviolet detector (MISPE-HPLC) was developed for selective extraction and determination of tramadol in human plasma and urine. The optimal conditions for molecularly imprinted solid-phase extraction (MISPE) consisted of conditioning with 1 mL methanol and 1 mL of deionized water at neutral pH, loading of tramadol sample (50 μg L−1) at pH 7.5, washing using 1 mL acetone and elution with 3 × 1 mL of 10% (v/v) acetic acid in methanol. The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of tramadol. Results from the HPLC analyses showed that the calibration curve of tramadol (using MIP from human plasma and urine) is linear in the ranges of 6–100 and 3–120 μg L−1 with good precisions (1.9% and 2.9% for 5.0 μg L−1), respectively. The recoveries for plasma and urine samples were higher than 81%.   相似文献   

11.
After human urine or serum was diluted (1 + 9) with HNO3 (0.2%, v/v) and standard additions of Se solution (100 μ L?1), the diluted sample (10 μL) was introduced into the graphite cuvette. The matrix modifier [10μL, containing Pd (0.6 μg) + Ni (25 μg) + NH4NO3 (80 μg) in HNO3 (0.2%, v/v) for urine, or Pd (0.3 μg) + Ni (30 μg) + NH4NO3 (80 μg) + Triton X-100 (0.04%) in HNO3 (0.2%, v/v) for serum, respectively] was added and the mixture was heated according to a temperature program. The matrix modifier containing NH4NO3 in a suitable amount and a small amount of Pd enhanced the sensitivity for Se. The method detection limits (3σ) after dilution were about 4.9 ± 0.8 and 2.36 ± 0.18 μg L?1 for urine and serum, respectively. The accuracy of this method was tested with SRM #2670 human urine Se and Seronorm Trace Elements #116 human serum Se, respectively, and the results of 97.6 – 101% and 100 – 104% were obtained with precision ± 0.3% and ± 2%, respectively. This method can be applied easily and accurately to the determination of concentration of total Se in human urine and serum.  相似文献   

12.
Despite the increasing number of applications of molecularly imprinted polymers (MIPs) in analytical chemistry, the construction of a biomimetic potentiometric sensor remains still challenging. In this work, a biomimetic potentiometric sensor, based on a non‐covalent imprinted polymer was fabricated for the recognition and determination of cetirizine. The MIP was synthesized by precipitation polymerization, using cetirizine dihydrochloride as a template molecule, methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross linking agent. The sensor showed high selectivity and a sensitive response to the template in aqueous system. The MIP‐modified electrode exhibited Nernstian response (28.0±0.9 mV/decade) in a wide concentration range of 1.0×10?6 to 1.0×10?2 M with a lower detection limit of 7.0×10?7 M. The electrode has response time of ca. 20 s, high performance, high sensitivity, and good long term stability (more than 5 months). The method was satisfactory and used to the cetirizine assay in tablets and biological fluids.  相似文献   

13.
Glycocholic acid (GCA) is a newly identified biomarker for hepatocellular carcinoma (HCC) patients. In this study, a method based on macromolecular crowding strategy has been applied for preparation of a molecularly imprinted polymer (MIP), which possesses high adsorption capacity for GCA. Polymethyl methacrylate was used as a macromolecular crowding agent, N‐(3‐aminopropyl)‐methacrylamide hydrochloride as a functional monomer and ethylene dimethacrylate as a cross‐linker. The morphology and binding characteristics of MIP were assessed by scanning electron microscopy and absorption experiments. The MIP was used as an adsorbent material to separate GCA, and the molecularly imprinted solid‐phase extraction (MISPE) was carefully optimized. The MISPE combined with high‐performance liquid chromatographic analysis was successfully used to determine the GCA in plasma and urine samples. When spiked levels ranged from 0.2 to 20 μmol L?1, the recoveries were between 94.3 and 100.5%. As a proof of principle, this proposed method has been validated on a small subset of HCC patients (n = 10) and healthy volunteers (n = 10). The average GCA concentrations of HCC patients in plasma and urine were about 25 and 2.8 times than that of healthy volunteers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A novel l‐ phenylalanine molecularly imprinted solid‐phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion‐pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid‐phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l‐ phenylalanine. Under the optimized conditions of the procedure, an analytical method for l‐ phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse‐phase silica gel, the obtained molecularly imprinted polymer as an solid‐phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L?1) for the isolation of l‐ phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion‐pair dummy template imprinting is effective for preparing selective solid‐phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples.  相似文献   

15.
《Electroanalysis》2004,16(19):1616-1621
The bismuth film electrode (BiFE) is presented for use in both batch voltammetric and flow injection (FI) amperometric detection of some nitrophenols (2‐nitrophenol, 2‐NP; 4‐nitrophenol, 4‐NP; 2,4‐dinitrophenol, 2,4‐DNP). The bismuth film was deposited ex situ (batch measurements) and in‐line (FI) onto a glassy carbon substrate electrode. Batch analysis of the nitrophenols was carried out in 0.04 M Britton Robinson (BR) buffer pH 4, while for FI measurements, a carrier/electrolyte solution composed of 0.1 M BR buffer pH 4 mixed with methanol (20+80, v/v%) was employed to resemble media used in preconcentration/clean‐up and flow separation sample pretreatment procedures. Under batch conditions, the voltammetric behavior of the nitrophenols was examined for dependence on medium pH in the range of 2 to 10. Employing the square‐wave voltammetry mode, the limits of detection were 0.4 μg L?1, 1.4 μg L?1, and 3.3 μg L?1 for 2‐NP, 4‐NP, and 2,4‐DNP, respectively. Under flow conditions, a simple in‐line electrochemical bismuth film renewal procedure was tested and shown to provide very good inter‐ and intra‐electrode reproducibility of the current signals at low μg L?1 analyte concentrations. The limits of detection for 2‐NP, 4‐NP and 2,4‐DNP obtained using FI and amperometric detection at ?1.0 V (vs. Ag/AgCl) were 0.3 μg L?1, 0.6 μg L?1 and 0.7 μg L?1, respectively, with linear ranges extending up to 20 μg L?1. The attractive performance of the BiFE under flow analysis conditions offers great promise with respect to its detection capability and to its use for a prolonged period of time with no need for inconvenient removal of the electrode from the system for mechanical surface treatment.  相似文献   

16.
《Electroanalysis》2017,29(4):1069-1080
In this study, we introduce a very sensitive and selective method for the differential pulse anodic stripping determination of Sb(III) ion on the over‐oxidized poly(phenol red) modified glassy carbon electrode (PPhRedox/GCE) in 0.1 mol L‐1 HCl medium. The formation of both poly(phenol red) and over‐oxidized poly(phenol red) film on the electrode surfaces were characterized by electrochemical impedance spectroscopy, X‐ray photoelectron spectroscopy and scanning electron microscopy techniques. An anodic stripping peak of Sb(III) was observed at 0.015 V on the PPhRedox/GCE. Higher anodic stripping peak current of Sb(III) was obtained at PPhRedox/GCE compared with both bare GCE and poly(phenol red) film modified GCE (PPhRed/GCE). The calibration graph consisted of two linear segments of 0.044 ‐ 1.218 μg L−1 and 3.40 – 18.26 μg L−1 with a detection limit of 0.0075 μg L−1. The proposed over‐oxidized polymer film modified electrode was applied successfully for the analysis of antimony in different spiked water samples. Spiked recoveries for water samples were obtained in the range of 93.0–103.0%. The accuracy of the method was also verified through the analysis of standard reference materials (SCP SCIENCE‐EnviroMAT™ EP−L‐2).  相似文献   

17.
《Electroanalysis》2018,30(1):154-161
Trace amount of arsenate in the presence of arsenite was determined directly on pencil graphite electrode modified by graphene oxide and zirconium (Zr−G−PGE). The layer‐by‐layer modification of PGE was characterized by scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Key point of the developed method was quick adsorption of arsenate than arsenite on the Zr−G−PGE. In optimal conditions, the Zr−G−PGE was applied for determination of arsenate using differential pulse voltammetry in a linear range 0.10–40.0 μg L−1 with a limit of determination of 0.12±0.01 μg L−1. The sensitivity of the electrode was 1.36±0.07 μA/μg L−1. The modified electrode was used to measure the concentration of arsenate in the river water. A recovery test was performed by introducing 10 μg L−1 arsenate into the rivers water in order and acceptable data of average recovery of 101.2 % was obtained. From the experimental results, the as‐prepared electrode can provide a satisfactory method for direct determination of arsenate in real samples.  相似文献   

18.
《Electroanalysis》2017,29(12):2689-2697
Stable and well dispersed nickel nanoparticles (NiNPs) were fabricated and embedded in a novel polymer sulfonate and benzimidazole functionalized poly (arylene ether ketone) (S‐BI‐PAEK) film. After drop‐casting the mixed solution of S‐BI‐PAEK and NiSO4 on glassy carbon electrode (GCE) surface, the uniformly distributed NiNPs were formed and stably embedded in S‐BI‐PAEK film by in‐situ electrochemical reduction method. The embedment and well dispersity of NiNPs in S‐BI‐PAEK film was probably attributed to the strong chelation of sulfonate and benzimidazole functional groups contained in S‐BI‐PAEK toward Ni2+ ions, as well as the transferability of Ni2+ ions in S‐BI‐PAEK film. The NiNPs/S‐BI‐PAEK composite film was characterized by scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDS), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). It exhibited good electrocatalytic activity toward glucose oxidation in 0.1 mol L−1 NaOH solution with high stability. The NiNPs/S‐BI‐PAEK/GCE showed a fast amperometric response with a wide linear range from 1 μM to 4 mM and a low detection limit of 200 nmol L−1 (S/N=3) for the determination of glucose by amperometry at a potential of 0.55 V. Finally it was successfully employed to determine glucose in human serum. Therefore, the novel fabrication method of nickel nanoparticles was promising for the future development of non‐enzymatic glucose sensor.  相似文献   

19.
This work reports the construction of screen-printed electrode (SPE) modified with carbon black (CB) and magnetic Fe3O4 nanoparticles coated with molecularly imprinted polymer (mag@MIP) based on an alternative low-cost approach. The proposed device was used for the sensitive and selective voltammetric determination of the antibiotic ciprofloxacin. The results obtained from cyclic voltammetry pointed to the improvement of the SPE response toward the irreversible oxidation of ciprofloxacin after the modification of the electrode surface with CB-based film and the magnetic preconcentration of mag@MIP containing adsorbed ciprofloxacin molecules. Compared to the non-molecularly imprinted sensor (mag@NIP), the presence of cavities selective for ciprofloxacin recognition in the mag@MIP nanoparticles accounted for the improvement in analytical signal of the molecularly imprinted sensor. The application of differential pulse voltammetry for ciprofloxacin determination yielded a linear response in the concentration range of 0.5 to 7.0 μmol L−1. The repeatability and interference tests results showed that the proposed electrochemical sensor has good measurement accuracy and selectivity. The proposed device was applied for the voltammetric determination of ciprofloxacin in river water and synthetic urine samples, where recovery rates close to 100 % were recorded for all the samples. The quantification data obtained from the application of the proposed voltammetric method were quite consistent with those of the HPLC reference method.  相似文献   

20.
Ciprofloxacin is an antibiotic that belongs to the class of drugs known as quinolones and it is frequently used to treat a variety of bacterial infections. The present work aims the development of a simple, cost‐effective, and environmentally friendly method for the determination of ciprofloxacin in drugs and artificial urine samples due to the high importance of this antibiotic for the human health. The proposed method is based on the electrogenerated chemiluminescence (ECL) resulting from the reaction between the ciprofloxacin and the tris(2,2′‐bipyridyl)ruthenium(II) complex. This method exploits a screen‐printed carbon electrode positioned in an ECL cell with capacity to 50 μL of electrolytic solution. The ECL intensity was monitored with the aid of a photodiode. The ECL signal was simultaneously registered to the voltammetric measurements. Under optimized experimental conditions, the ECL method presented a linear response range for ciprofloxacin between 0.5 and 500 μmol L?1 (or 0.0005 and 0.5 mmol L?1). The proposed method presented a detection limit of 0.5 μmol L?1 and it was successfully applied for the ciprofloxacin determination in drugs and artificial urine samples, with good accuracy and precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号