首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
汪海有  刘金波 《分子催化》1993,7(4):252-260
催化剂活性测试表明,助剂Mn显著提高了铑的催化活性.通过考察H_3/D_2同位素效应发现在Mn促进的及非促进的铑催化剂上进行的合成气反应中,乙醇生成反应均表现出显著的氘位素效应.结合CO化学吸附、XRD.CO吸附IR、XPS、EPR等物化表征手段对催化剂的表征结果,讨论了助剂Mn的作用本质.提出助剂Mn~(2+)通过与反应中间体甲酰基氧端的亲合作用.促进了CO加氢生成甲酰基的反应及其随后的氢解生成卡宾物种的反应,从而显著提高铑催化活性的观点.  相似文献   

2.
采用La2(CO3)3空气焙烧法制备了La2O2CO3载体, 采用浸渍法制备了不同比例的ZnO-La2O2CO3复合载体及Ru/ZnO, Ru/La2O2CO3, Ru/ZnO-La2O2CO3催化剂, 考察了各催化剂催化乙醇水蒸气重整反应的性能, 并用XRD, TPR技术对催化剂进行表征. 结果表明, 在复合载体负载的催化剂中有钌镧复合氧化物生成, 其中Zn:La摩尔比为1:1时, 催化剂显示了最好的乙醇水蒸气重整性能, 450 ℃时乙醇的转化率为100%, 氢气的选择性达到90%, 而CO的选择性低于1%.  相似文献   

3.
Ni/Al2O3和Ni/La2O3催化剂上低温乙醇水蒸气重整制氢   总被引:14,自引:0,他引:14  
孙杰  吴锋  邱新平  王芳  郝少军  刘媛 《催化学报》2004,25(7):551-555
 采用浸渍、热分解和氢还原等步骤制备了两种纳米晶载体催化剂Ni/Al2O3和Ni/La2O3,应用X射线衍射、X射线光电子能谱、N2吸附和扫描电镜对催化剂的体相和表面结构进行了测定,采用固定床反应器考察了催化剂对乙醇水蒸气重整制氢反应的催化性能. 实验结果表明, 15.3%Ni/La2O3催化剂对乙醇的低温水蒸气重整反应表现出较高的催化活性和稳定性. 250 ℃时乙醇的转化率已达到80.7%,氢气的选择性为49.5%; 330 ℃时乙醇的转化率达到100%,氢气的选择性可达54.3%. 16.1%Ni/Al2O3催化剂对低温乙醇水蒸气重整反应的催化活性较低.  相似文献   

4.
SMAI法制备的Co/SiO2催化剂及La3+促进Co/SiO2催化剂的比较   总被引:1,自引:0,他引:1  
实验证明,钴基催化剂是非常有效的F-T合成催化剂. 由于钴基催化剂对形成长链烷烃具有高活性和高选择性,故它尤其适用于天然气间接转换为液态燃料和蜡的过程[1~5]. F-T合成用钴基催化剂由四个主要成分组成: 主金属(Co)、第二过渡金属、氧化物助剂(碱金属、稀土金属或过渡金属氧化物)及大比表面积氧化物载体(氧化硅或氧化铝)[5]. La对钴基催化剂的促进效果因其被加入到催化剂前体中的方式和顺序以及载体的性质和金属钴的状态等参数的变化而有所不同. 为了评价La对Co/SiO2催化CO加氢作用的促进效果,本文对溶剂化金属原子浸渍法(SMAI)制备的Co/SiO2和Co/La-SiO2进行了对比研究. 在保持某些参数(如载体的性质和金属钴的价态等)不变的情况下,评价了La的助催化效果,取得了一些有益的结果.  相似文献   

5.
 利用空气挤压排液成型法在 1250 ℃下制得了高孔隙率高热稳定性的莫来石纤维陶瓷. 这种多孔莫来石纤维陶瓷具有较均匀的孔分布,并且孔隙率高达96.22%. 以这种多孔陶瓷为载体制备了负载型La0.8Sr0.2CoO3-δ钙钛矿催化剂,该催化剂对NO氧化CO表现出很好的催化活性和稳定性. 在催化剂中掺入贵金属Pd之后,催化剂的催化活性得到了很大的提高.  相似文献   

6.
采用La2(CO3)3空气焙烧法制备了La2O2CO3载体、采用浸渍法制备了Ni,Fe不同比例的Ni-Fe双金属催化剂及Ni/La2O2CO3,Fe/La2 O2 CO3催化剂,考察了各催化剂从300~700℃催化乙醇水蒸气重整反应的性能,并用BET,XRD,TPR等技术对催化剂进行表征。结果表明,相对单一金属催化剂,Ni-Fe双金属催化剂均表现出更高的活性,这可能是因为高分散的Ni,Fe和LaFeyNi1-yO3的共存作用。其中Ni含量为10%,Fe含量为5%时的Ni-Fe/La2O2CO3表现出最高的活性,400℃时乙醇的转化率为100%,H2的选择性最高达到94.1%,而CO的选择性则低至1.2%。  相似文献   

7.
催化生物乙醇制氢有望成为用清洁可再生能源替代化石能源的有效途径,近年来受到广泛关注。本文介绍了制氢的研究概况及燃料电池的相关应用,概括了生物乙醇制氢的优势及反应过程。重点综述了以Ce和La为代表的稀土金属在乙醇制氢反应中的催化效果,并对与制氢反应紧密相关的甲烷水蒸气变换反应、水汽变换反应、CO选择性氧化反应和黑碳氧化反应中稀土金属的催化作用进行了探讨。在综述相关研究进展的基础上为生物乙醇制氢催化剂的开发提供建议。  相似文献   

8.
采用非晶态配合物的方法合成了La1-xCexCoO3(x=0、0.05、0.1、0.2、0.3)催化剂, 并采用X射线衍射(XRD)、透射电镜(TEM)和比表面测定仪(BET)等手段对催化剂的微观结构进行了研究. 揭示了Ce掺杂对催化剂的钙钛矿结构, CO催化氧化以及催化氧化发光性能的影响规律. 结果表明, 在Ce4+掺杂部分取代La3+后, 催化剂形成了镧不足的La1-xCeyφx-yCoO3(φ是A位离子空位)钙钛矿相以及CeO2和Co3O4物相. 与LaCoO3催化剂相比, x=0.1催化剂的CO催化氧化活性最高(T100%=290 ℃). La1-xCexCoO3催化剂对CO催化氧化发光的响应与其催化活性密切相关.  相似文献   

9.
马晓明  林国栋  张鸿斌 《催化学报》2006,27(11):1019-1027
 以自行制备的多壁碳纳米管(CNT)作为添加剂,制备共沉淀型CNT促进的Co-Mo-K硫化物基催化剂. 实验发现,与未添加CNT的催化剂相比,添加少量CNT可显著提高CO的加氢转化活性和生成低碳醇的选择性. 在5.0 MPa, 623 K, V(CO)∶V(H2)∶V(N2)=45∶45∶10, GHSV=3600 ml/(g·h)的反应条件下, Co1Mo1K0.3-10%CNT催化剂上CO的转化率达21.6%, 相应的总醇(C1~4醇)时空产率为241.5 mg/(g·h), 产物中C2+醇/C1醇=1.39 (C基选择性比). 添加少量CNT并不会导致Co1Mo1K0.3硫化物基催化剂上CO加氢反应表观活化能发生明显变化,但却导致工作态催化剂表面催化活性Mo物种(Mo4+)的摩尔百分率有所提高; 另一方面, CNT促进的催化剂对H2有更强的吸附活化能力,并能在相当大程度上抑制水煤气变换副反应的发生. 这些因素有利于提高催化剂的活性和选择性.  相似文献   

10.
改性羟基磷灰石催化尿素醇解合成碳酸丙烯酯   总被引:1,自引:0,他引:1  
杜治平  刘亮  袁华  熊剑  周彬  吴元欣 《催化学报》2010,31(4):371-373
 采用浸渍法制备了金属改性羟基磷灰石 (M/HAP) 催化剂, 并考察了其催化尿素醇解合成碳酸丙烯酯的反应性能. 结果表明, 用碱金属、碱土金属和稀土金属改性的 HAP 催化剂活性比 HAP 和相应金属氧化物都有不同程度的提高, 其中 La/HAP 活性最高, 碳酸丙烯酯收率达 91.5%. X 射线衍射、扫描电镜、N2 吸附-脱附和 CO2 程序升温脱附等表征结果表明, 经 La 改性后, 在 La/HAP 表面形成了大量新的强碱性活性位, 这是该催化剂活性高的主要原因.  相似文献   

11.
An amorphous Mo–Os–Se carbonyl cluster compound has been synthesized in 1,2-dichlorobenzene (b.p.≈180°C) to be tested as an electrocatalyst for molecular oxygen reduction in 0.5 M H2SO4. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) performed for the powder supported on pyrolytic carbon show a distribution of nanometer-scale amorphous particles with agglomerations in cluster forms. The catalytic activity was studied by the rotating disc electrode technique. Kinetic studies show a first-order reaction with a Tafel slope of −0.118 V dec−1 and dα/dT=1.55×10−3 K−1. In the temperature range 298–343 K, an activation energy of 32 kJ mol−1 was determined.  相似文献   

12.
2%Fe-10%Co/SiO2 catalysts with different potassium or zirconium loadings were prepared by aqueous incipient wetness impregnation and tested for Fischer-Tropsch synthesis in a flow reactor, using H2/CO = 1.6 (molar ratio) in the feed, under the condition of an overall pressure of 1 MPa, GHSV of 600 h−1 and temperature of 503 K. The zirconium and potassium promoters remarkably influenced hydrocarbon distribution of the products. CO conversion increased on the catalysts with the increase of zirconium loadings, which indicated that zirconium enhanced the activity of iron-cobalt catalysts. Low potassium loadings also enhanced the activity of the catalysts. However, high potassium loading made CO conversion on the catalysts decrease and weakened the secondary hydrogenations. The catalyst was characterized by BET, XRD and TPR. The catalyst characterization revealed that the Co3O4 phase was presented on the fresh catalyst, whereas the spinel phase of Fe-Co alloy and CoO existed on the used catalyst.  相似文献   

13.
Selective oxidation of CO that is in mixtures enriched in H2 was studied to investigate catalytic properties of the 0.5—80% CuO/Ce0.7Zr0.3O2 system. The catalysts were prepared by the combined decomposition of copper, cerium, and zirconyl nitrates at 300 °C. The systems studied are active and stable under mild conditions of the process (80—160 °C) and at high space velocities (to 100000 h–1) of the reaction mixture (2% CO, 1% O2, 40—50% H2). With an increase in the CuO content in the catalysts up to 20%, the degree of CO removal achieves 60% (120 °C and V = 35000 h–1) and further does not change appreciably. The contribution of oxygen participation into CO oxidation is virtually independent of the copper concentration in the sample and ranges from 65 to 75%. The dependences of the Arrhenius equation parameters for CO and H2 oxidation on the catalyst composition were determined, which makes it possible to calculate the conversion of reactants and selectivity of CO conversion under the specified conditions of the process. The addition of CO2 and H2O (12—15%) to the reaction mixture decreases the catalyst activity and simultaneously increases the selectivity of CO oxidation to 100%. It is shown by the TPR and X-ray diffraction methods that the combined decomposition of the starting Cu2+, Ce3+, and ZrO2+ nitrates produces solid solutions of oxides with a high content of CuO. The reductive pre-treatment of fresh samples of the studied catalysts results in the destruction of the solid solution and formation of highly dispersed Cu particles on the surface of Ce—Zr—O. These particles are active in CO oxidation.  相似文献   

14.
CO2 methanation is an important reaction in CO2 valorization. Because of the high kinetic barriers, the reaction usually needs to proceed at higher temperature (>300 °C). High-efficiency CO2 methanation at low temperature (<200 °C) is an interesting topic, and only several noble metal catalysts were reported to achieve this goal. Currently, design of cheap metal catalysts that can effectively accelerate this reaction at low temperature is still a challenge. In this work, we found that the amorphous Co–Zr0.1–B–O catalyst could catalyze the reaction at above 140 °C. The activity of the catalyst at 180 °C reached 10.7 mmolCO2 gcat−1 h−1, which is comparable to or even higher than that of some noble metal catalysts under similar conditions. The Zr promoter in this work had the highest promoting factor to date among the catalysts for CO2 methanation. As far as we know, this is the first report of an amorphous transition metal catalyst that could effectively accelerate CO2 methanation. The outstanding performance of the catalyst could be ascribed to two aspects. The amorphous nature of the catalyst offered abundant surface defects and intrinsic active sites. On the other hand, the Zr promoter could enlarge the surface area of the catalyst, enrich the Co atoms on the catalyst surface, and tune the valence state of the atoms at the catalyst surface. The reaction mechanism was proposed based on the control experiments.

It is discovered that an amorphous transition metal catalyst Co–Zr0.1–B–O could effectively accelerate CO2 methanation, at a rate that is comparable to or even higher than that of some noble metal catalysts under similar conditions.  相似文献   

15.
The Ni-B-Oδ andNi-B-Zr-Oδ catalysts were prepared by the method of chemical reduction, and the deep removal of CO by selective methanation from the reformed fuels was performed over the as-prepared catalysts. The results showed that zirconium strongly influenced the activity and selectivity of the Ni-B-Zr-Oδ catalysts. Over the Ni-B-Oδ catalyst, the highest CO conversion obtained was only 24.32% under the experimental conditions studied. However, over the Ni-B-Zr-Oδ catalysts, the CO methanation conversion was higher than 90% when the temperature was increased to 220 oC. Additionally, it was found that the Ni/B mole ratio also affected the performance of the Ni-B-Zr-Oδ catalysts. With the increase of the Ni/B mole ratio from 1.8 to 2.2, the CO methanation activity of the catalyst was improved. But when the Ni/B mole ratio was higher than 2.2, the performance of the catalyst for CO selective methanation decreased instead. Among all the catalysts, the Ni29B13Zr58Oδ catalyst investigated here exhibited the highest catalytic performance for the CO selective methanation, which was capable of reducing the CO outlet concentration to less than 40 ppm from the feed gases stream in the temperature range of 230–250 oC, while the CO2 conversion was kept below 8% all along. Characterization of the Ni-B-Oδ and Ni-B-Zr-Oδ catalysts was provided by XRD, SEM, DSC, and XPS.  相似文献   

16.
Uniformly dispersed Co/SiO2 catalysts (10–60 wt% on metal basis) were prepared by the sol-gel method, and used for the Fischer-Tropsch (F-T) synthesis in slurry phase at 503 K and 1 MPa in a flow of synthesis gas (H2/CO = 2/1, W/F = 10 g-catal·h/mol). The catalysts were characterized by temperature-programmed reduction (TPR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and chemisorption. Although CO conversion over the unpromoted catalysts prepared by the sol-gel method was lower than the conventional catalysts prepared by impregnation, the catalytic activity of the former catalysts was more stable than the latter catalysts. The conversion was improved drastically, when 0.01–1 wt% of Ir or Ru (on metal basis) was added to the catalysts prepared by the sol-gel method. The TPR and XPS spectra and the H2 chemisorption revealed that the noble metal addition was responsible for the reduction of Co particles in the catalysts. It is supposed that the durability of the promoted catalysts prepared by the sol-gel method was ascribed to the high dispersion of Co particles stabilized on the catalyst surface.  相似文献   

17.
Bimetallic catalysts (Fe+Co)/SiO2 were prepared by impregnation of SiO2 with solutions of carbonyl clusters [FeCo3(CO)12][(C2H5)4N], [Fe3Co(CO)13][(C2H5)4N], HFeCo3(CO)12, [Fe5CoC(CO)16][(C2H5)4N], and Co2(CO)8, Fe(CO)5. At 20 °C, no reaction occurs between the compounds supported and the surface of the support. The stability of the supported clusters to thermodecarboxylation in a hydrogen atmosphere depends on their composition and is the highest for the catalyst [FeCo3(CO)12]/SiO2. The catalytic properties of supported clusters in CO hydrogenation are mostly determined by the preactivation technique. The properties of Fe-Co catalysts which were pretreated at high temperatures, are in general similar to those of standard metal catalysts. Product distribution for the same samples prepared without preactivation does not fit the Schulz-Flory equation. The catalyst HFeCo3(CO)12/SiO2 favors the formation ofC 1–C11 hydrocarbons in the temperature range of 468–473 K; the catalyst [Fe3Co(CO)13]/SiO2 gives ethylene in the temperature range of 453–473 K.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1079–1085, June, 1993.  相似文献   

18.
Four trinuclear molybdenum(tungsten)-sulfur carbonyl cluster compounds, [Et4N]2[(OC)4Mo-S2MoS2Mo(CO)4] (1), [Et4N]2[(OC)4WS2WS2W(CO)4] (2), [Et4N]2[(OC)4MoS2WS2Mo(CO)4] (3), [Et4N]2[(OC)4WS2MoS2W(CO)4] (4) have been prepared by both reaction of [M(CO)4(S2CNEt2)] with M′S42− in MeOH and reaction of MeCN solution of M(CO)6 with M′S42− in MeOH (M=Mo, W; M′=Mo, W). These complexes has been characterized by routine elemental analysis and spectroscopy and the structures of 1 and 3 have been determined by X-ray crystallography. The structure study reveals that the anion of 3 contains a heteronuclear Mo–W–S trimetallic core, [MoS2WS2Mo]2−, consisting of two perpendicular rhombic MoS2W units sharing a tungsten atom. The Mo–W bond distances are 3.028(2) and 3.031(2) Å and the Mo–W–Mo angle is 176.04(5)°. The average bond lengths of W–S and Mo–S are 2.21 and 2.54 Å, respectively. The X-ray, structure, IR, CV (cyclic voltammetry) and 95 Mo NMR studies on these four cluster complexes indicated that these cluster complexes possess wide separated oxidation states of metal atoms and exhibit the charge transfer, ML→MHS4 (ML represents a low-valance metal atom and MH a high valence metal atom), between the two different valence metallic centers in the cluster complexes. It has been found that the charge transfer, ML→MHS4, in the complexes are: 1>4, 3>2, 1>3, 4>2, 1>2 and 34 implying the electron-donation ability of low-valence metal atoms in the complexes is Mo0>W0 and the electron-accepted ability of the high valence metal atoms in the complexes is MoVI>WVI.  相似文献   

19.
The favourable influence of selenium on the catalytic properties of Ru-based catalysts for the oxygen reduction reaction in acid electrolytes has been investigated by rotating disk electrode measurements. Compared to the oxygen reduction of selenium-free Ru-based catalysts, the overpotential at low current densities (ca. 10 μA cm−2) is not affected by the presence of selenium whereas selenium-containing catalysts show higher current densities under fuel cell relevant conditions. The kinetically controlled current density at 0.6 V versus SHE increases 4–5 fold with increasing selenium content. A maximum value is obtained at about 15 mol% Se. This effect is tentatively explained by a modification of the catalytic active centre, which is assumed to consist of Ru---C---CO complexes. IR spectroscopic investigations indicate a reaction of selenium with these complexes. This model is also supported by the study of the electrooxidation of CO. In contrast to the selenium-free catalyst, no CO oxidation is observed on the selenium-containing catalyst. Additional effects of selenium are an enhanced stability towards electrochemical oxidation and a lower amount of Ru oxides formed during synthesis, as evidenced from XRD investigations. Direct four electron oxygen reduction to water is efficient and H2O2 production of these catalysts is small (about 5% at potentials <0.3 V vs. SHE ).  相似文献   

20.
A novel ternary Sb–Co–P alloy electrode was prepared by electroplating on copper current collector as a promising negative electrode material for lithium-ion batteries. The structural and morphological features of the Sb–Co–P alloy were characterized by powder X-ray diffraction (XRD) and scanning electron microscope (SEM). The as-prepared alloy electrode exhibits a high specific capacity and an excellent cycleability. The initial discharge and charge capacities of the Sb–Co–P alloy anode were measured 700 and 539 mA h g−1, respectively. The results suggest that the Sb–Co–P alloy material obtained by the electrodeposition shows a good candidate anode material for lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号