首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Li  YanShuang  Luo  HongXia  Dai  LiMing  Guo  Wei  Li  ShaNa  Guo  ZhiXin 《中国科学:化学(英文版)》2012,55(11):2502-2506
The electrochemical behavior of nanodiamond (ND) film functionalized with carboxylic acid groups was studied systematically on a glassy carbon (GC) electrode. One stable redox couple corresponding to the carboxylic acid group was observed. At the scan rate of 0.1 V/s, the cathodic and anodic peak potentials were 0.093 V and 0.088 V (vs. Ag/AgCl), respectively. The carboxylic acid groups on the ND surface were reduced to CH 2 OH via a four electron redox process. The ND film modified electrode showed favorable electrocatalytic behavior toward the oxidation as well as the reduction of biomolecules, such as tryptophan and nicotinamide adenine dinucleotide.  相似文献   

2.
A method for fabrication of ordered carbon nanotube (CNT) film,which was template-synthesized within the highly ordered pores of a commercially available alumina template membrane,modified glassy carbon(CNT/GC) electrode was established.The CNT/GC electrode showed excellent electrocatalytic activity toward dopamine electrochemical reaction without introducing any electrochemically active group into CNT film or activating any electrochemically active group into CNT film or activating the electrode electrochemically.DA undergoes ideal reversible electrochemical reaction on CNT/GC electrode at low scan rate(≤20mV/s) with an excellent reproducibility and stability.The CNT/GC electrode might be used in biosensors because the highly ordered CNT may present a steric effect on more efficient redox reactions of biomolecules.  相似文献   

3.
Direct electrochemistry and electrocatalysis of myoglobin(Mb) were studied with Mb immobilized on dodecyltrimethylammonium bromide(DTAB) film modified carbon ceramic(CC) electrode.Cyclic voltammetry showed a pair of well-defined and nearly reversible redox peaks of Mb(Fe/Fe) at about—0.3 V vs.SCE(pH = 6.98).The currents of the redox peak were linear to scan rate,and rate constant(Ks) was estimated to be 3.03 s-1.The formal potential(E°’) of Mb in the DTAB/CC electrodes shifted linearly with pH with a slope of -36.44 mV/pH,implying that the electron transfer between DTAB and CC electrodes is accompanied by proton transportation.The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide(H2O2).  相似文献   

4.
A reliable method for simultaneous determination of three antibiotic drugs(levofloxacin,gatifloxacin and lomefloxacin) by differential pulse stripping voltammetry(DPSV) in Britton-Robinson buffer(pH 7.96) was presented.The method is based on adsorptive accumulation of the antibacterial drugs on a hanging mercury dropping electrode(HMDE),followed by the reduction of the adsorptive species by the technique of DPSV.Optimal conditions,the deposition time of 80 s,the deposition potential of—1250 mV,and the scan rate of 25 mV/s,were obtained.The linear concentration ranges of 0.010-0.080μg/mL were obtained for all these three antibiotic drugs,while the detection limits were 2.38,3.20 and 1.60ng/mL for levofloxacin,gatifloxacin and lomefloxacin,respectively.In this work,chemometrics methods,such as classical least squares(CLS),partial least squares(PLS), principle component regression(PCR) and radial basis function-artificial neural networks(RBF-ANN),were used to quantitatively resolve the overlapping signals.It was found that PCR gave the best results with total relative prediction error(RPE_T) of 7.71%.The proposed method was applied to determine these three drugs in several commercial food samples with spiked method and yielded satisfactory recoveries.  相似文献   

5.
After the synthesis of polyaniline in the presence of ferrocenesulfoniccarboxylic acid, its influence on the electrochemical reaction of methanol was studied. The result indicates that the ferrocenyl in ferrocenesulfoniccarbexylic acid plays an important role in the electrocatalytic oxidation of methanol. CH3OH is adsorbed on PANI-Fc before its electrocatalytic oxidation. When the concentration of methanol is 2 mol/L, it begins to be oxidized. The effect of scan rate on the electrochemical reaction of methanol was also studied and 5 mV/s was favourable. It is another method to insert a metal catalyst in polyaniline without its electrodeposition.  相似文献   

6.
A novel hydrogen peroxide biosensor has been fabricated based on covalently linked horseradish peroxidase (HRP) onto L- glutathione self-assembled monolayers (SAMs). The SAMs-based electrode was characterized by electrochemical methods, and direct electrochemistry of HRP can be achieved with formal potential of-0.242 V (vs. saturated Ag/AgCl) in pH 7 phosphate buffer solution (PBS), the redox peak current is linear to scan rate and rate constant can be calculated to be 0.042 s^-1. The HRP-SAMs- based biosensors show its better electrocatalysis to hydrogen peroxide in the concentration range of 1 × 10^-6 mol/L to 1.2 × 10^-3 mol/L with a detection limit of 4 × 10^-7 mol/L. The apparent Michealis-Menten constant is 3.12 mmol/L. The biosensor can effectively eliminate the interferences of dopamine, ascorbic acid, uric acid, catechol and p-acetaminophen.  相似文献   

7.
Dicyandiamide(DICY) is a common ligand that exhibits low toxicity but can irritate the skin and eyes and cause methemoglobinemia on long-term exposure. Crystalline Cu-dicyandiamide(Cu-DICY) was obtained via facile synthesis and its molecular structure and theoretical Raman spectra were simulated by using density functional theory(DFT). The results suggested that the Cu~(2+) coordinates with two H_2 O molecules and two different DICY molecules(an imino DICY and an amino DICY). The stability constants of Cu-DICY were calculated, and the electrochemical properties were studied. Two electrochemical redox processes occur in Cu-DICY in an aqueous solution: a reversible reaction with a formal potential of 0.2 V vs.MSE and an irreversible reaction between –0.4 and –1.2 V vs. MSE. The standard rate constant k0 for the reversible reaction was estimated to be 7.6×10~(-3) cm/s. In addition, based on the reversible reaction of Cu-DICY, square wave voltammetry was used to rapidly determine the concentration of Cu(II) and the detection limit was 66.7 μg/L, which satisfies the detection limit requirements for copper in tap water(2 mg/L) as provided by the World Health Organization.  相似文献   

8.
By preparing nano-CeO2 (CeO2) and reduced graphene oxide (RGO), an electrochemical sensor based on CeO2/RGO composite was constructed for the detection of histamine. The morphology and structure of the composites were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical behavior of histamine on the sensor was studied by cyclic voltammetry (CV), and the conditions such as the type proportion and addition amount of the composite scanning rate and buffer pH were optimized. The results showed that the optimal conditions were as follows: The mass ratio was m(CeO2): M(RGO)=1: 0.25, the addition amount of composite material was 10 μL, the scanning rate was 300 mV/s and the pH of buffer solution was 8. A good linear relationship was observed between the peak current and the concentration of histamine in the range of 0.25–100 mg/L with the detection limit of 0.16 mg/L. The CeO2/RGO/GCE electrochemical sensor has been applied to the determination of histamine in fish samples with the spiked recoveries of 98.4% −104%. The method can be used to determine histamine content in fish products. © 2023, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

9.
The electrochemical behavior of a bis (N-2-methylphenyl-salicyldenaminato)copper (II) complex spiked in a carbon paste electrode (BMPSCu-CPE) and its electrocatalytic reduc-tion of H2 O2 were examined using cyclic voltammetry, chronoamperometry, and differen-tial pulse voltammetry. Cyclic voltammetry was used to study the redox properties of BMPSCu-CPE at various potential scan rates. The apparent charge transfer rate constant and the transfer coefficient for the electron transfer between BMPSCu and the carbon paste electrode (CPE) were 1.9 ± 0.1 s–1 and 0.43, respectively. BMPSCu-CPE had excel-lent electrocatalytic activity for H2 O2 reduction in 0.1 mol/L phosphate buffer solution (pH 5.0), and it decreased the overpotential by 300 mV as compared to CPE alone. The diffusion coefficient and kinetic parameters such as the heterogeneous catalytic electron transfer rate constant and electron transfer coefficient for the reduction of H2 O2 at the BMPSCu-CPE surface were also determined using electrochemical methods. Differential pulse voltammetry showed two linear dynamic ranges of 1.0–10.0 and 10.0–300.0 μmol/L and a detection limit of 0.63 μmol/L H2 O2. The BMPSCu-CPE has excellent repro-ducibility and long term stability, and it was successfully applied for the determination of H2 O2 in two pharmaceutical samples: an antiseptic solution and a hair dying cream.  相似文献   

10.
Microperoxidase-11(MP-11) was immobilized on the surface of a silanized glass carbon electrode by means of the covalent bond with glutaraldehyde.The measurements of cyclic voltammetry demonstrated that the formal redox potential of immobilized MP-11 was -170mV.which is significantly more positive than that of MP-11 in a solution or immobilized on the surface of electrodes prepared with other methods.This MP-11 modified electrode showed a good electrocatalytic activity and stability for the reduction of oxygen and hydrogen peroxide.  相似文献   

11.
An electroactive polynuclear inorganic compound of rare earth metal hexacyanoferrate, dysprosium hexacyanoferrate (DyHCF), was prepared by a procedure of electrochemical deposition on the surface of a glassy carbon electrode with a potential cycling procedure. The cyclic voltammogram of DyHCF exhibits two pairs of redox peaks with the formal potential of +210 and +362 mV (vs. SCE), respectively, at a scan rate of 10 mV/s in 0.2 mol/L KCl solution. The different electrochemical behaviors of DyHCF in various cation-containing supporting electrolytes were investigated by cyclic voltammetry. DyHCF was also characterized by scanning electron microscope (SEM), FTIR , XPS etc. techniques.  相似文献   

12.
《Electroanalysis》2005,17(17):1583-1588
A new electroactive polynuclear inorganic compound of rare earth metal hexacyanoferrate, dysprosium hexacyanoferrate (DyHCF), was prepared chemically and characterized using techniques of FTIR spectroscopy, thermogravimetric analysis (TGA), UV‐vis spectrometry and X‐ray photoelectron spectroscopy (XPS) etc. The cyclic voltammetric behavior of DyHCF mechanically attached to the surface of graphite electrode was well defined and exhibited a pair of redox peaks with the formal potential of 217 mV (vs. SCE) at a scan rate of 100 mV/s in 0.2 M NaCl solution and the redox peak currents increased linearly with the square root of the scan rates.  相似文献   

13.
A new electroactive polynuclear inorganic compound of a rare earth metal hexacyanoferrate, samarium hexacyanoferrate (SmHCF), was prepared chemically and characterized using techniques of FTIR spectroscopy, thermogravimetric analysis (TGA), X-ray powder diffraction, UV–Vis spectrometry and X-ray photoelectron spectroscopy (XPS) etc. The cyclic voltammetric behavior of SmHCF mechanically attached to the surface of graphite electrode was well defined and exhibited a pair of redox peaks with the formal potential of 180.5 mV (versus SCE) at a scan rate of 100 mV/s in 0.2-M NaCl solution and the redox peak currents increased linearly with the square root of the scan rates up to as high as 1,000 mV/s. The effects of the concentration of supporting electrolyte on the electrochemical characteristics of SmHCF and the transport behavior of K+, Na+ and Li+ counter-ions through the ion channel of SmHCF were studied by voltammetry.  相似文献   

14.
《Electroanalysis》2004,16(16):1324-1329
Lanthanum hexacyanoferrate (LaHCF) was immobilized onto a substrate surface as an electroactive material by Au‐codeposition method. The LaHCF particles were attached to the electrode surface as the result of occlusion within the gold film deposited. This deposition method was first introduced for the preparation of hexacyanoferrate‐based modified electrodes. It was demonstrated that this deposition method provides a higher stability of the electroactive film in comparison with available methods for the mechanical attachment of electroactive films. On the other hand, electrochemical properties of the LaHCF film modified electrode were studied for the first time. The results showed that LaHCF film has excellent electrochemical activity as well as other analogues of Prussian blue. The modified electrode was successfully used as an electrocatalyst for the oxidation of ascorbic acid.  相似文献   

15.
Polynuclear mixed‐valent nickel oxide and nickel hexacyanoferrate hybrid film was prepared on glassy carbon electrode by multiple scan cyclic voltammetry. The film growth was monitored using electrochemical quartz crystal microbalance (EQCM). The cyclic voltammogram of the nickel hexacyanoferrate film is characterized by single redox couple whereas nickel oxide/nickel hexacyanoferrate hybrid film exhibits two redox couples. Cyclic voltammetric features suggest that the charge transfer process in both films resembles that of surface‐confined redox species. In stronger basic solution (pH ≥9), nickel hexacyanoferrate film was gradually converted into nickel oxide film during potentiodynamic cycling. The peak potential of nickel oxide redox couple moved into more negative side with increasing pH of contacting solution whereas the peak potential of nickel hexacyanoferrate redox couple remains the same. Electrocatalytic behavior of hybrid film coated electrodes toward ascorbic acid, hydrazine and hydroxylamine was investigated using cyclic voltammetry technique. Analytical application of nickel oxide/nickel hexacyanoferrate hybrid film electrode was tested in amperometry and flow injection analysis.  相似文献   

16.
采用树状聚酰胺-胺(PAMAM)大分子化合物与同多酸阴离子[Mo6O19]2-,基于静电作用合成了同多金属氧酸盐/树型分子超分子化合物。用元素分析、FTIR、UV-V is、TG/DTA、荧光光谱等测试技术分别对样品进行了结构表征及性能测试。并利用其作为电极修饰剂,制得化学体修饰的碳糊电极(CMCPE),用循环伏安法研究了同多金属氧酸盐/树型分子超分子化合物修饰碳糊电极在1 mol/L H2SO4水溶液中的电化学行为。结果表明,该化合物具有良好的荧光性能和可逆光致变色性能;用该化合物修饰的碳糊电极与[Mo6O19][N(C4H9)2]2修饰的电极相比,在-0.2~0.2 V范围内多了1对氧化还原峰;当扫描速率低于100 mV/s时,该电极过程为表面控制过程,而当扫描速率高于100 mV/s时,电极过程变为扩散控制过程;且该电极在室温下具有很好的稳定性。  相似文献   

17.
氯过氧化物酶修饰电极对一氯二甲酮的催化氯化   总被引:2,自引:0,他引:2  
通过将氯过氧化物酶溶液(Chloroperoxidase, CPO)与Nafion分散的单壁碳纳米管分散液混合后直接滴涂到玻碳电极表面制得修饰电极. 这个固定了氯过氧化物酶的碳纳米管修饰玻碳电极, 在pH=5.0的磷酸缓冲溶液中测得的循环伏安曲线上有一对准可逆的氧化还原电流峰, 经过与裸电极和没有固定氯过氧化物酶的碳纳米管修饰电极上测得的循环伏安行为对比后确认, 碳纳米管对氯过氧化物酶与电极之间的电子传递反应具有很好的促进作用. 利用该修饰电极能催化一氯二甲酮氯化为二氯二甲酮, 无需添加过氧化氢作为反应启动剂, 紫外光谱的测试结果表明, 每摩尔氯过氧化物酶可催化氯化4.0×105 mol 的一氯二甲酮, 表现出很高的催化效率.  相似文献   

18.
石彦茂  杜攀  吴萍  周耀明  蔡称心 《电化学》2006,12(4):382-387
应用电化学循环扫描法于玻碳电极表面沉积并形成铁氰化钆修饰电极(GdHCF/GC),扫描电镜(SEM)显示,有两种大小和外形明显不同的颗粒状GdHCF附着在电极表面.红外光谱表明,GdCHF的C≡N弯曲振动吸收峰出现在2062.5 cm-1处.循环伏安法测试表明,在0.2 mol/L NaC l溶液中,GdHCF/GC电极出现两对氧化还原峰,扫速为20 mV/s时,其氧化还原峰的式量电位分别为E0’(I)=192.5 mV和E0’(II)=338.5 mV.研究了不同支持电解质对GdHCF/GC电极电化学性能的影响,GdHCF对Na+离子有优先选择性.  相似文献   

19.
以碳纳米管(MWNTs)修饰的碳糊电极为基底电极,通过电沉积方法制备了六氰合铁酸钴(CoHCF)纳米多孔生物传感平台。考察了MWNTs对CoHCF沉积的影响,优化了CoHCF沉积的各种实验条件(0.5mol/L KCl,1 mmol/L CoCl2和0.9 mmol/L K3Fe(CN)6混合溶液,在循环伏安电压范围0~1.1 V内扫20圈,扫速100 mV/s),借助循环伏安法、交流阻抗法和扫描电镜法对修饰电极进行了表征。由于MWNTs的支撑作用,电沉积得到的CoHCF呈现出多孔结构和良好的电化学稳定性。具有纳米多孔结构的MWNTs-CoHCF薄膜能有效地促进生物小分子在电极上的电子交换,维生素B2在纳米多孔CoHCF/MWNTs上具有优异的氧化还原行为,其测定线性范围为1.2×10-7~2.6×10-7mol/L,检出限为8.9×10-8mol/L。  相似文献   

20.
A novel copper hexacyanoferrate (CuHCF) film modification on cysteamine (Cys)-gold nanoparticle (AuNp) graphite-wax (GW) composite electrode was achieved for the quantitative determination of L-Tryptophan (L-Trp) at a reduced overpotential of 400mV in comparison with the bare Cys-AuNp-GW composite electrode. This modified electrode exhibited a well resolved pair of redox peaks corresponding to the hexacyanoferrate (II/III) reactions of CuHCF film at a formal potential of 0.65 V at a scan rate of 20 mV s(-1). Electrochemical impedance spectroscopy (EIS) studies with the modified electrode showed a very low charge transfer resistance to the electron transfer kinetics of Fe(II)/Fe(III) reactions. A linear range of 8.5×10(-7) M to 1.2×10(-4) M with a detection limit of 1.85×10(-8) M was achieved for the determination of L-Trp with a sensitivity of 0.1198 μA/μM. The influence of ultrasonication on the stability of the CuHCF film modified electrode was investigated. In addition, the CuHCF film modified electrode displayed an excellent reproducibility towards the real time analysis of L-Trp in commercial milk samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号