首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
丙烷脱氢制丙烯能够将低级烷烃转变成烯烃,是有效扩大丙烯来源的生产工艺.铂锡催化剂用于丙烷催化脱氢的主要缺点是稳定性差、选择性低,通过稳定锡的氧化态可以大大改善催化剂的脱氢性能及稳定性.本文采用一锅水热合成法制备了一系列高比表面积具有高度有序介孔结构的Sn掺杂的Sn-SBA-15材料,并作为载体负载铂催化剂用于丙烷脱氢反应.同时利用传统浸溃法(IM)合成了Sn/SBA-15-IM材料作为对比.结合X射线衍射(XRD)、BET比表面积和孔体积测试、红外光谱(FT-IR)、X射线光电子能谱、H_2程序升温脱附(H_2-TPD)、热重分析(TGA)、扫描电镜和透射电镜等多种物理化学表征手段研究了Sn-SBA-15材料和催化剂的结构性质及其丙烷脱氢反应性能.XRD和BET比表面积和孔体积测试结果表明,水热合成法原位引入助剂Sn不影响载体SBA-15的有序孔道结构,同时能够保持较大的比表面积.传统浸溃法引入Sn会堵塞载体孔道,载体比表面积及孔道有序度下降.Sn掺杂进入SBA-15骨架能够增强Sn物种与载体的相互作用,有利于Sn物种在反应过程中保持氧化态,提高催化剂丙烷脱氢反应的活性及选择性.当Sn掺杂量增至2.0 wt%时,Pt,Sn组分与载体之间的相互作用减弱,催化剂中Sn~0物种所占比例增多,导致催化剂丙烷脱氢性能下降.在丙烷脱氢反应过程中,一锅法引入Sn的催化剂上反应活性和稳定性明显优于浸溃法引入Sn的催化剂.其中,Pt/0.5Sn-SBA-15催化剂表现出最优的丙烷脱氢性能,丙烷转化率为43.8%,丙烯选择性为98.5%.  相似文献   

2.
PtZn-Sn/SBA-15合成、表征及对丙烷催化脱氢性能   总被引:4,自引:0,他引:4  
以SBA-15为载体,利用浸渍法制备了单、双和三金属Pt催化剂,并对催化剂进行了N2物理吸附(BET)、程序升温还原(H2-TPR)、H2-化学吸附、透射电子显微镜(TEM)和O2-脉冲等技术表征,研究了它们对丙烷催化脱氢(CDH)制丙烯反应的催化性能。研究结果表明,Pt在三金属催化剂中的分散性能最好,并且部分负载组分可以进入SBA-15的孔道,Pt的分散度达到29%,Pt粒子尺寸为3 nm左右。三金属催化剂表现出优越的脱氢性能,这主要归结于载体的弱酸性、活性组分和助剂、载体之间的相互作用及Zn对Pt的电子调控作用。这些因素使催化剂的积炭量较低,因而具有较高的脱氢稳定性和极高的选择性。  相似文献   

3.
丙烷脱氢制丙烯是优化利用炼厂气和油田伴生气资源的一条重要途径.随着丙烯需求量的逐步增加,丙烷脱氢制丙烯日益受到重视.负载型PtSn/γ-Al2O3催化剂具有优良的丙烷脱氢活性和选择性,但在高温、低氢压的反应条件下,催化剂易积炭而失活.近年来,选用了微孔分子筛如ZSM-5和介孔分子筛如SBA-15和MCM-41作为PtSn催化剂的载体,结果表明,具有规整孔道结构的负载型PtSn/分子筛催化剂的丙烷脱氢反应稳定性明显优于PtSn/γ-Al2O3催化剂.SUZ-4分子筛与ZSM-5分子筛结构相似且孔径相当,所不同的是ZSM-5由十元环交叉孔道组成,而SUZ-4由十元环和八元环孔道垂直相交组成.我们用微型催化反应装置结合XRD、BET比表面积和孔体积测试、NH3吸附-程序升温脱附(NH3-TPD)、氢化学吸附、热重分析(TG)、H2程序升温还原(H2-TPR)和程序升温氧化(TPO)等多种物理化学手段研究了负载型PtSnNa/SUZ-4和PtSnNa/ZSM-5催化剂的结构和丙烷脱氢反应性能,以及这两种催化剂在丙烷脱氢反应中催化性能差异的原因.实验结果显示,在丙烷脱氢反应中,负载型PtSnNa/SUZ-4催化剂上丙烯选择性和反应稳定性明显优于PtSnNa/ZSM-5催化剂,说明载体一定程度上会影响催化剂上丙烷脱氢反应性能.XRD,BET比表面积和孔体积测试等表征手段结果表明,SUZ-4和ZSM-5的孔体积和比表面积比较接近,载体的结构又类似,且两者的积碳量也相近,故载体的基本性质和积碳量的差异不是引起催化剂性能差异的原因.NH3-TPD结果表明,H-SUZ-4的酸强度明显强于H-ZSM-5.由于浸渍法制备负载型PtSn催化剂所用前体为具有强酸性的混合溶液(H2PtCl6+SnCl4),存在于SUZ-4分子筛孔道内表面的强酸中心不利于上述前体与SUZ-4分子筛孔道内表面结合.ZSM-5分子筛孔道内表面比较弱的强酸中心,促进了催化剂前体在ZSM-5分子筛孔道内表面的分散与结合.和ZSM-5为载体的催化剂相比,PtSnNa/SUZ-4上Pt粒子大部分分散在载体的外表面,从而金属上的积碳不易引起催化剂的失活.故多孔材料上Pt的分布是影响催化活性差异的主要原因.为进一步证明多孔材料上Pt的分布是影响催化活性差异的主要原因,我们通过二苯并噻吩预处理催化剂的手段证明Pt粒子在分子筛孔内外的分布情况.由于二苯并噻吩的尺寸比较大(0.8 nm)不能进入到分子筛的孔道内(SUZ-4:0.56 nm,ZSM-5:0.56 nm),所以载体孔道外的部分Pt会被二苯并噻吩预处理而失去活性,而孔道内的Pt不会因为预处理仍具有催化活性.实验结果表明,PtSnNa/SUZ-4经过二苯并噻吩预处理后,催化活性大大降低;而PtSnNa/ZSM-5经过二苯并噻吩预处理后,催化活性几乎没有变化.说明PtSnNa/SUZ-4上Pt粒子大部分分散在载体的外表面,从而金属上的积碳不易引起催化剂的失活.  相似文献   

4.
丙烷脱氢制丙烯是优化利用炼厂气和油田伴生气资源的一条重要途径.随着丙烯需求量的逐步增加,丙烷脱氢制丙烯日益受到重视.负载型PtSn/γ-Al_2O_3催化剂具有优良的丙烷脱氢活性和选择性,但在高温、低氢压的反应条件下,催化剂易积炭而失活.近年来,选用了微孔分子筛如ZSM-5和介孔分子筛如SBA-15和MCM-41作为PtSn催化剂的载体,结果表明,具有规整孔道结构的负载型PtSn/分子筛催化剂的丙烷脱氢反应稳定性明显优于PtSn/γ-Al_2O_3催化剂.SUZ-4分子筛与ZSM-5分子筛结构相似且孔径相当,所不同的是ZSM-5由十元环交叉孔道组成,而SUZ-4由十元环和八元环孔道垂直相交组成.我们用微型催化反应装置结合XRD、BET比表面积和孔体积测试、NH_3吸附-程序升温脱附(NH_3-TPD)、氢化学吸附、热重分析(TG)、H_2程序升温还原(H_2-TPR)和程序升温氧化(TPO)等多种物理化学手段研究了负载型PtSnNa/SUZ-4和PtSnNa/ZSM-5催化剂的结构和丙烷脱氢反应性能,以及这两种催化剂在丙烷脱氢反应中催化性能差异的原因.实验结果显示,在丙烷脱氢反应中,负载型PtSnNa/SUZ-4催化剂上丙烯选择性和反应稳定性明显优于PtSnNa/ZSM-5催化剂,说明载体一定程度上会影响催化剂上丙烷脱氢反应性能.XRD,BET比表面积和孔体积测试等表征手段结果表明,SUZ-4和ZSM-5的孔体积和比表面积比较接近,载体的结构又类似,且两者的积碳量也相近,故载体的基本性质和积碳量的差异不是引起催化剂性能差异的原因.NH_3-TPD结果表明,H-SUZ-4的酸强度明显强于H-ZSM-5.由于浸渍法制备负载型PtSn催化剂所用前体为具有强酸性的混合溶液(H_2PtCl_6+SnCl_4),存在于SUZ-4分子筛孔道内表面的强酸中心不利于上述前体与SUZ-4分子筛孔道内表面结合.ZSM-5分子筛孔道内表面比较弱的强酸中心,促进了催化剂前体在ZSM-5分子筛孔道内表面的分散与结合.和ZSM-5为载体的催化剂相比,PtSnNa/SUZ-4上Pt粒子大部分分散在载体的外表面,从而金属上的积碳不易引起催化剂的失活.故多孔材料上Pt的分布是影响催化活性差异的主要原因.为进一步证明多孔材料上Pt的分布是影响催化活性差异的主要原因,我们通过二苯并噻吩预处理催化剂的手段证明Pt粒子在分子筛孔内外的分布情况.由于二苯并噻吩的尺寸比较大(0.8 nm)不能进入到分子筛的孔道内(SUZ-4:0.56 nm,ZSM-5:0.56 nm),所以载体孔道外的部分Pt会被二苯并噻吩预处理而失去活性,而孔道内的Pt不会因为预处理仍具有催化活性.实验结果表明,PtSnNa/SUZ-4经过二苯并噻吩预处理后,催化活性大大降低;而PtSnNa/ZSM-5经过二苯并噻吩预处理后,催化活性几乎没有变化.说明PtSnNa/SUZ-4上Pt粒子大部分分散在载体的外表面,从而金属上的积碳不易引起催化剂的失活.  相似文献   

5.
采用高压浸渍法制备了Pt-Sn/Al2O3催化剂,Pt含量为0.25%,以丙烷脱氢制丙烯的反应评价了催化剂的性能,考察了氧化铝晶型、制备方法、Sn添加量和空速对催化剂性能的影响。结果表明θ型的氧化铝载体比?型氧化铝活性高,?型氧化铝制备的样品活性较低,与常规浸渍法相比,高压浸渍法制备的催化剂活性较高,助剂Sn的添加量对催化剂上丙烷的转化率、丙烯选择性和稳定性具有较大的影响,催化剂的分散度与活性是正相关的,当Pt与Sn的摩尔比为1∶2.5时催化剂活性和分散度最高,转化率为35.6%,选择性大于95%,反应72 h内催化剂性能稳定,较优的丙烷反应空速为1 500/h。  相似文献   

6.
不同孔道结构的氧化硅负载钒氧化物催化丙烷氧化脱氢   总被引:1,自引:0,他引:1  
采用固定床微型反应装置,结合催化剂的原位电子自旋共振光谱、程序升温表面反应和紫外漫反射光谱等技术,研究了丙烷氧化脱氢的介孔氧化硅负载钒氧化物催化剂的性能和表面氧物种的状态及其反应性.结果表明,催化剂载体孔结构是影响钒氧物种分散状态乃至催化性能的一个重要因素.SBA-15负载钒氧化物催化剂因具有较大的比表面积和较大的孔径,不仅具有较高的丙烷氧化脱氢催化活性,而且具有较高的丙烯选择性.复合型钒氧化物催化剂表面与V离子相连的晶格氧物种是丙烷氧化脱氢牛成内烯的主要活性物种,载体表面高度分散的钒氧物种具有较高的丙烷氧化脱氢催化活性.负载型钒氧化物催化剂晶格氧物种是丙烷氧化脱氢转化为丙稀的主要活性物种,CO_2分子可以再生钒氧化物催化剂的晶格氧物种,同时它对丙烯的深度氧化作用较弱,因此在负载型钒氧化物催化剂上CO_2氧化丙烷可高选择性地生成丙烯.  相似文献   

7.
CO2氧化丙烷脱氢制丙烯V-Cr/SBA-15催化剂的研究   总被引:1,自引:0,他引:1  
以介孔分子筛SBA-15为载体,V和Cr为活性组分,采用浸渍法制备了不同V和Cr质量分数的V-Cr/SBA-15催化剂,研究了其对二氧化碳氧化丙烷制丙烯反应的催化性能,采用XRD、BET、TPR等分析测试技术对催化剂的结构进行了表征。结果表明,催化剂中V组分的质量分数较大时以V2O5物相存在,Cr组分以Cr2O3物相存在,它们对SBA-15分子筛的介孔特征影响不大;V、Cr单组分和双组分催化剂都具有较好的CO2氧化丙烷脱氢制丙烯的催化性能,V和Cr质量分数相同的双组分催化剂比单组分催化剂具有更高的催化活性;在V-Cr/SBA-15催化剂中,V和Cr之间存在一定的相互作用,进而改变了催化剂的氧化还原性能,提高了催化剂的催化性能。  相似文献   

8.
利用一步水热法制备了原位掺杂Fe的Silicalite-1分子筛载体,浸渍得到相应的Pt基催化剂,用于丙烷的直接脱氢反应。作为对比,也制备了Pt/Silicalite-1和共浸渍的Pt1Fe2/Silicalite-1催化剂。研究发现较之Pt/Silicalite-1催化剂,原位掺入Fe的Pt/Fe-Silicalite-1催化剂反应性能有了很大程度地提高,而共浸渍制备的Pt1Fe2/Silicalite-1催化剂反应性能有所降低。在Pt/Fe-Silicalite-1催化剂上,尽管丙烷的初始转化率略有降低,但丙烯的选择性和催化稳定性大幅提高。反应8 h后丙烷转化率稳定在43.7%、丙烯选择性达到98.0%;且在80 h内基本保持不变。深入表征发现Fe的原位掺入使得Pt物种配位饱和度提高,避免了丙烷的深度脱氢使得丙烯选择性提高、结焦速率降低;且通过Fe-Pt之间电子转移,使得Pt上的电子云密度增强,增强了丙烯的脱附能力,进一步降低了结焦速率。另外载体中的Fe位点可以锚定Pt,使得Pt物种不易聚集,从而进一步提高了Pt/Fe-Silicalite-1的稳定性,使得该催化剂在反应80 h后仍保持高转化率和选择性。  相似文献   

9.
采用浸渍法通过改变焙烧气氛制备了系列NiO/SBA-15 (wNiO=20%)催化剂, 并考察了催化剂的丙烷氧化脱氢(ODHP)反应性能. 实验结果表明, 与在静止和流动空气中焙烧的催化剂相比, 在1%NO/He (VNO/VHe=1:99)气氛中焙烧的NiO/SBA-15-NO具有优异的低温丙烷氧化脱氢制丙烯性能, 在350 ℃时, 丙烷的转化率和丙烯收率分别约达29%和13%. 反应温度升至450 ℃时, 丙烯的选择性仍保持在45%左右. X射线粉末衍射(XRD)和透射电镜(TEM)测试结果表明, 1%NO/He气氛可有效抑制焙烧过程中NiO纳米颗粒的团聚, 使NiO物种高分散于SBA-15 的孔道中. H2-程序升温还原(H2-TPR)和O2-程序升温脱附(O2-TPD)测试结果表明, 随着NiO在SBA-15上分散度的提高, 催化剂的抗还原性增强, ODHP活性氧物种O-的含量增加, 进而使1%NO/He气氛中焙烧的NiO/SBA-15-NO在较宽的温度范围内(350-450 ℃)均具有良好的丙烯选择性, 并显著提高了催化剂的低温活性.  相似文献   

10.
利用浸渍法制备了系列不同钒含量的VOx/SBA-15乙苯脱氢催化剂.并采用BET、UV-vis、XRD、TPO和O2脉冲等物理化学表征手段对催化剂进行了表征.二氧化碳气氛下的乙苯氧化脱氢反应结果表明,在550℃,当V2O5的含量为20%时,催化剂表现出最好的脱氢性能.乙苯的转化率达到74.1%,同时也获得95.7%的苯乙烯选择性.20VOx/SBA-15具有较高的比表面积、较多的酸性、较少的积碳,这可能是该催化剂表现出较好的催化性能的原因.  相似文献   

11.
The catalytic properties of PtSn-based catalysts supported on siliceous SBA-15 and Al-modified SBA-15, such as Al-incorporated SBA-15 (AlSBA-15) and alumina-modified SBA-15 (Al2O3/SBA-15), for propane dehydrogenation were investigated. Al2O3/SBA-15 was prepared either by an impregnation method using aluminum nitrate aqueous solution, or by the treatment of SBA-15 with a Al(OC3H7)3 solution in anhydrous toluene. N2-physisorption, FT-IR spectroscopy, solid-state 27Al MAS NMR spectroscopy, hydrogen chemisorption, XRF, NH3 temperature-programmed desorption, X-ray photoelectron spectroscopy and TPO were used to characterize these samples. Among these catalysts, the PtSn-based catalyst supported on Al2O3/SBA-15, which was grafted with Al(OC3H7)3, exhibited the best catalytic performance in terms of activity and stability The possible reason was due to the high Pt metal dispersion and/or the strong interactions among Pt, Sn, and the support.  相似文献   

12.
用微型催化反应装置评价, 并结合X射线粉末衍射(XRD)、表面积和孔结构测试、程序升温还原(TPR)、氢化学吸附和热重分析等方法研究了负载型PtSn/γ-Al2O3, PtSn/MCM-41和PtSn/Al2O3/MCM-41催化剂的丙烷脱氢反应催化性能. 发现PtSn/Al2O3/MCM-41催化剂具有较PtSn/MCM-41催化剂高的丙烷脱氢反应活性和较PtSn/γ-Al2O3催化剂高的反应稳定性. 实验结果表明, 纯硅MCM-41载体表面的锡物种因与载体相互作用较弱故易被还原, 导致铂金属分散度和催化剂的丙烷脱氢活性较低. 用Al2O3修饰MCM-41可以增强Sn物种与Al2O3/MCM-41载体之间的相互作用, 提高PtSn/Al2O3/MCM-41催化剂铂金属分散度和丙烷脱氢催化活性. 并且, 积炭后的PtSn/Al2O3/MCM-41催化剂具有较高的铂金属表面裸露度, 故具有较高的丙烷脱氢反应稳定性. PtSn/Al2O3/MCM-41催化剂优良的丙烷脱氢催化性能可能不仅与Sn-载体Al2O3/MCM-41较强的相互作用有关, 而且与Al2O3/MCM-41载体的介孔结构有关.  相似文献   

13.
采用羰基合成-浸渍法制备了不同Pt/Sn摩尔比(3:1, 1:1, 1:2和1:3)的PtSn/Al2O3催化剂, 利用N2吸附-脱附实验、 X射线衍射(XRD)、 透射电子显微镜(TEM)、 吡啶吸附红外光谱(Py-IR)和热重-差热分析(TG-DTA)等手段对其进行了表征, 研究了Sn负载量对PtSn/Al2O3的结构性质及催化丙烷脱氢性能的影响. 结果表明, 制备的PtSn/Al2O3具有较高的丙烯选择性和稳定性. 当Pt/Sn摩尔比为3:1和1:1时, 铂和锡在催化剂上主要以Pt3Sn和PtSn合金形式存在, 合金的形成明显改善了催化剂的脱氢性能, 可抑制金属颗粒的高温烧结; 当Pt/Sn摩尔比为1:2和1:3时, 铂主要以金属形式存在. 随着Sn负载量的增加, 催化剂上L酸性位逐渐减少, 丙烷转化率降低, 丙烯选择性增加, 同时促使反应积炭从金属表面向载体迁移, 改善了催化剂的稳定性.  相似文献   

14.
A series of Ni/SBA-15 catalysts with Ni contents ranging from 5wt% to 20wt% as well as 10wt%Ni/10wt?xZn-xO2/SBA-15 (z=0, 0.5, 1) were prepared. The structures of the catalysts were characterized using XRD, TPR, TEM and BET techniques. The catalytic activities of the catalysts for steam reforming of methane were evaluated in a continuous flow microreactor. The results indicated that both the Ni/SBA-15 and the Ni/CexZr1-xO2/SBA-15 catalysts had good catalytic activities at atmospheric pressure. The 10wt%Ni/SBA-15 catalyst exhibited excellent stability at 800癈 for time on stream of 740 h. After the reaction, carbon deposits were not formed on the surface of the catalyst. There existed a regular hexagonal mesoporous structure in the Ni/SBA-15 and the Ni/CexZr1-xO2/SBA-15 catalysts. The nickel species and the CexZr1-xO2 component were all confined in the SBA-15 mesopores. The CexZr1-xO2 could promote dispersion of the nickel species in the Ni/CexZr1-xO2/SBA-15 catalysts.  相似文献   

15.
SBA-15负载纳米CoMoO4催化剂催化丙烷氧化脱氢制丙烯   总被引:1,自引:0,他引:1  
采用柠檬酸配位-浸渍法制备不同CoMoO4含量的系列CoMoO4/SBA-15催化剂, 通过X射线衍射、透射电镜和低温N2吸附法对样品进行了表征. 结果表明, 柠檬酸配位-浸渍法可在介孔分子筛孔道中形成高含量、均匀分散且有确定晶相的CoMoO4, 同时能够很好地保持载体的介孔结构. 与非负载的CoMoO4相比, 由柠檬酸配位-浸渍法制备的CoMoO4/SBA-15催化剂在丙烷氧化脱氢反应中具有更好的催化活性, 当CoMoO4的含量为13%(w)、反应温度为823 K时, 丙烯产率达到16.8%.  相似文献   

16.
添加锡组分对Pt/ZSM-5催化剂丙烷脱氢反应性能的影响   总被引:1,自引:0,他引:1  
丙烷脱氢制丙烯是优化利用炼厂气和油田伴生气资源的一条重要途径,这方面的研究已日益引起研究者的关注[1~5].对γ-Al2O3为载体的负载型铂催化剂丙烷脱氢催化性能已进行了深入的研究.通过引入特定的助剂,可以提高负载型铂催化剂低碳烷烃脱氢选择性和稳定性[6,7].与Ce、Zn、V、La、Cr、Fe、Zr、Mn等助剂比较,Sn助剂更有利于提高催化剂丙烷脱氢的反应稳定性[8].  相似文献   

17.
考察了CeO2修饰及未修饰的Ni/Mo/SBA-15催化剂在CH4-CO2重整上的催化性能并采用N2吸脱附、CO2程序升温脱附、H2程序升温还原、傅里叶红外光谱、X射线衍射、扫描电子显微镜和X射线光电子能谱对催化剂进行了表征.结果表明,在常压,800oC条件下,经过100h在线评价后,Ni/Mo/SBA-15和CeO2/Ni/Mo/SBA-15催化剂仍具有高的反应活性和规整的六方介孔结构,其中CeO2修饰的CeO2/Ni/Mo/SBA-15催化剂表面没有积炭形成,表明CeO2的加入促进了Ni物种在SBA-15介孔分子筛表面的分散,从而阻止了Ce/Ni/Mo/SBA-15催化剂上Ni的烧结和积炭.  相似文献   

18.
采用沉淀法制备了ZrO2,CeO2和Ce0.7Zr0.3O2载体,并用浸渍法制备负载型Pt催化剂。考察了500和900℃焙烧催化剂的丙烷完全氧化性能和水汽对丙烷氧化反应的影响。对于500℃焙烧的催化剂,催化剂的丙烷氧化活性顺序为:Pt/ZrO2-500>Pt/CeO2-500>Pt/Ce0.7Zr0.3O2-500;而经900℃焙烧的催化剂活性顺序为:Pt/ZrO2-900>Pt/Ce0.7Zr0.3O2-900>Pt/CeO2-900。反应气氛中水汽的存在对两种Pt/ZrO2催化剂的活性均有抑制作用(T50温度均提高了10~15℃);而对于Pt/CeO2-500催化剂有抑制作用(T50温度提高10℃),但对Pt/CeO2-900催化剂活性有促进作用(T50温度下降25℃);对于两种Pt/Ce0.7Zr0.3O2催化剂活性具有促进作用(T50温度均下降5~25℃)。表征结果表明催化剂的活性与其表面Pt物种价态密切相关,催化剂表面上Pt0物种有利于活性的提高。Pt/Ce0.7Zr0.3O2-500催化剂中只含有氧化态Pt物种(Pt^2+),而Pt/Ce0.7Zr0.3O2-900催化剂中则含有部分金属态Pt物种,因此其活性高于Pt/Ce0.7Zr0.3O2-500催化剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号