首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 606 毫秒
1.
The simultaneous determination of Zn and Cu by anodic stripping voltammetry (ASV) is prone to errors due to the formation of Cu‐Zn intermetallic compounds. The main aim of this work was to study the possibility of simultaneous determination of Zn and Cu, together with Hg and Pb, using a mercury‐free solid gold microwire electrode. The multi‐element detection was carried out by differential pulse anodic stripping voltammetry (DPASV), in a chloride medium (0.5 M NaCl) under moderate acid conditions (HCl 1.0 mM) in the presence of oxygen, where the gold microwire electrode was used as stationary or vibrating working electrode during the deposition step. Under these conditions, no formation of Cu‐Zn intermetallic compounds were found for concentrations usually determined in surface waters. In addition, quantification of Zn and Cu, together with Hg and Pb, can be performed in a wide range of concentrations (about two orders of magnitude) using the same sample, in a very short period of time. The detection limits for Cu, Hg, Pb and Zn, using a vibrating electrode and 30 s of deposition time, were 0.2 µg L?1 for Hg, 0.3 µg L?1 for Pb and 0.4 µg L?1 for Zn and Cu, respectively. The proposed DPASV methods were successfully applied to the determination of Cu, Hg, Pb, and Zn in a certified reference fresh water, river, tap and coastal sea waters. These results proved the applicability and versatility of the proposed methods for the analysis of different water matrices and showed that a gold microwire electrode is a suitable choice to determine simultaneously Zn and Cu.  相似文献   

2.
The electrochemical behavior of complexes of fatty amides, synthesized from vegetable oil, with Cu(II) has been investigated. In this study, a platinum electrode was used in presence of DMSO as a medium. Reduction of Cu(II)/fatty amides complex was found with quasi-reversible reaction. The peak potential of voltammetric behavior of fatty amides is about ?0.77 V at a scan rate v = 0.1 V s?1 versus Ag|Ag+ electrode. This study shows that Cu(II)-fatty amides complex is poorly adsorbed on the electrode surface. Additionally, the copper complex form of fatty amides has a more stable structure than pure fatty amides to form the electrochemical reduction of the complex.  相似文献   

3.
《Electroanalysis》2005,17(24):2231-2238
Square‐wave voltammetric detection of dopamine was studied at a copper (Cu)‐(3‐mercaptopropyl) trimethoxy silane (MPS)‐complex modified electrode (Cu‐MPS). The modification of the electrode was based on the attachment of MPS onto an electrochemically activated glassy carbon electrode (GCE) by the interaction between methoxy silane groups of MPS and surface hydroxyl groups and followed by the complexation of copper with the thiol groups of MPS. The surface of the modified electrode was further coated by a thin layer of Nafion film. The surface of the Nafion coated MPS‐Cu complex modified electrode (Nafion/Cu‐MPS) was characterized using cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM), scanning electron microscope (SEM), X‐ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT‐IR) spectrometry. The modified electrode exhibited an excellent electrocatalytic activity towards the oxidation of dopamine, which was oxidized at a reduced potential of +0.35 V (vs. Ag/AgCl) at a wider pH range. Various experimental parameters, such as the amount of copper, the pH, and the temperature were optimized. A linear calibration plot was obtained in the concentration range between 8.0×10?8 M and 5.0×10?6 M and the detection limit was determined to be 5.0×10?8 M. The other common biological compounds including ascorbic acid did not interfere and the modified electrode showed an excellent specificity to the detection of dopamine. The Nafion/Cu‐MPS modified electrode can be used for about 2 months without any significant loss in sensitivity.  相似文献   

4.
《Electroanalysis》2005,17(10):912-914
An investigation was made into the accuracy of cupric ion selective electrode (ISE) measurement of Cu in solutions approximating acidic freshwaters with Cu‐ethylenediamine buffers used as the calibrants. This method overestimates the free Cu compared with calibration using Cu(NO3)2 standards, the standard addition method, and speciation modelling calculations. Statistical tests showed a small, but significant, difference between the intercepts of the linear Nernstian regressions of the calibration plots of Cu‐en buffer standardisation and direct calibration with Cu(NO3)2 standards in matrix that matches the samples. The difference in the intercepts, which corresponds with Eo values of the electrode, is not well understood, but is possibly caused by potentially interfering cations such as Fe2+. The results of this study showed that down to 10?8 M Cu2+, where a linear Nernstian response is possible, the Cu ISE is probably better calibrated using Cu standards prepared in the same matrix as the sample solutions to avoid potential matrix effects.  相似文献   

5.
Recently, carboxylate metal‐organic framework (MOF) materials were reported to perform well as anode materials for lithium‐ion batteries (LIBs); however, the presumed lithium storage mechanism of MOFs is controversial. To gain insight into the mechanism of MOFs as anode materials for LIBs, a self‐supported Cu‐TCNQ (TCNQ: 7,7,8,8‐tetracyanoquinodimethane) film was fabricated via an in situ redox routine, and directly used as electrode for LIBs. The first discharge and charge specific capacities of the self‐supported Cu‐TCNQ electrode are 373.4 and 219.4 mAh g?1, respectively. After 500 cycles, the reversible specific capacity of Cu‐TCNQ reaches 280.9 mAh g?1 at a current density of 100 mA g?1. Mutually validated data reveal that the high capacity is ascribed to the multiple‐electron redox conversion of both metal ions and ligands, as well as the reversible insertion and desertion of Li+ ions into the benzene rings of ligands. This work raises the expectation for MOFs as electrode materials of LIBs by utilizing multiple active sites and provides new clues for designing improved electrode materials for LIBs.  相似文献   

6.
A penicillamine (PCA) self-assembled monolayer (SAM) was prepared on a gold electrode. It has been found that the modified electrode exhibited a selective response to copper ions. As demonstrated by cyclic voltammetric experiments, the SAM-based electrode showed an attractive ability to preconcentrate efficiently traces of copper(II) from solutions. Under optimum conditions, the anodic peak current was proportional to the concentration of Cu(II) in the range from 8.0 × 10−7 to 1.0 × 10−4 M with a detection limit of 4.0 × 10−7 M. Moreover, this modified gold electrode is also characterized by excellent repeatability, showing a relative standard deviation of 3.2% for nine successive measurements of 1.0 × 10−5 M Cu(II). The PCA/Au SAM gold electrode was used for the determination of Cu(II) in a tap water sample and the results showed a good agreement with the data obtained by atomic emission spectrometry. The text was submitted by the authors in English.  相似文献   

7.
Pt‐nanoparticles were synthesized and introduced into a carbon paste electrode (CPE), and the resulting modified electrode was applied to the anodic stripping voltammetry of copper(II) ions. The synthesized Pt‐nanoparticles were characterized by cyclic voltammetry, scanning electron microscopy and X‐ray photoelectron spectroscopy techniques to confirm the purity and the size of the prepared Pt‐nanoparticles (ca. 20 nm). This incorporated material seems to act as catalysts with preconcentration sites for copper(II) species that enhances the sensitivity of Cu(II) ions to Cu(I) species at a deposition potential of ?0.6 V in an aqueous solution. The experimental conditions, such as, the electrode composition, pH of the solution, pre‐concentration time, were optimized for the determination of Cu(II) ion using as‐prepared electrode. The sensitivity changes on the different binder materials and the presence of surfactants in the test solution. The interference effect of the coexisted metals were also investigated. In the presence of surfactants, especially TritonX‐100, the Cu(II) detection limit was lowered to 3.9×10?9 M. However, the Pt‐nanoparticle modified CPE begins to degrade when the period of deposition exceeds to 10 min. Linear response for copper(II) was found in the concentration range between 3.9×10?8 M and 1.6×10?6 M, with an estimated detection limit of 1.6×10?8 M (1.0 ppb) and relative standard deviation was 4.2% (n=5).  相似文献   

8.
Cyclic voltammogram and square wave voltammograms indicated that Cu (II) ion being reduced to Cu(0) was a two-electron process: Cu(II)?+?e??→?Cu(I) and Cu(I)?+?e??→?Cu(0). The diffusion activation energy for Cu (I) ions was calculated as 42.85 kJ mol?1. The equilibrium potential and apparent standard potential for Cu (I)/Cu(0) redox couple was measured by open circuit chronopotentiometry at a temperature of 773–923 K. Three reduction peaks, corresponding to the formation of PrxCuy intermetallic compounds, were detected from cyclic voltammogram and square wave voltammogram obtained by co-reduction of Pr (III) and Cu (II) or electrodeposition of Pr (III) on Cu electrode. Furthermore, potentiostatic electrolysis was performed to extract the element Pr on Cu electrode, and the electrolytic products were analyzed by scanning electron microscopy equipped with energy dispersive spectrometry. Meanwhile, the highest extraction efficiency of Pr (III) ions could reach about 99.81% at ??2.20 V for 22 h at 823 K.  相似文献   

9.
《Electroanalysis》2006,18(5):478-484
Cuprous oxide nanowhisker was prepared by using cetyltrimethyl ammonium bromide (CATB) as soft template, and was characterized by XRD and TEM methods. The electrochemical properties of nano‐Cu2O and nano‐Cu2O‐methylene blue (MB) modified electrode were studied. The experimental results indicate that nano‐Cu2O shows a couple of redox peaks corresponding to the redox of Cu(II)/Cu(I), the peak currents are linear to the scan rates which demonstrate that the electrochemical response of Cu2O is surface‐controlled. The composite nano‐Cu2O‐Nafion‐MB modified electrode shows a trend of decrease of peak currents corresponding to the Cu (II)/Cu (I). However, the electrocatalytic ability of nano‐Cu2O‐MB composite film to dopamine increases dramatically. At this composite electrode, dopamine shows a couple of quasireversible redox peaks with a peak separation of 106 mV, the peak current increases about 8 times and the oxidation peak potential decreases about 200 mV as compared to that at bare glassy carbon electrode. The peak currents change linearly with concentration of dopamine from 1×10?7 to 3.2×10?4 mol/L, the detection limit is 4.6×10?8 mol/L. The composite electrode can effectively eliminate the interference of ascorbic acid and has better stability and excellent reproducibility.  相似文献   

10.
《Electroanalysis》2004,16(7):524-531
In this work we report a new electrode material formed by injection‐moulding of a conducting polymer consisting of carbon fibers in a Nylon matrix. This material is highly conductive, inexpensive, easy to mould in different shapes and requires minimal pretreatment. The electrode was tested as a mercury‐free sensor for the trace determination of Cu(II) by anodic stripping voltammetry (ASV). The deposition and stripping behavior of copper on the conducting material was initially studied by cyclic voltammetry and the chemical and instrumental parameters of the determination were investigated. The electrode has been shown to be suitable for the determination of Cu(II) in the range 8 μg L?1 to 30 mg L?1 (with deposition times ranging from 30 s to 10 min) with a relative standard deviation of 2.2% (at the 0.5 mg L?1 level) and a limit of detection of 8 μg L?1 Cu(II) for 10 min of accumulation (at a S/N ratio of 5). The electrode was, finally, applied to the determination of copper in tap‐water, pharmaceutical tablets and bovine serum with recoveries of 97.4, 94.9 and 93.4%, respectively  相似文献   

11.
Novel nickel‐copper modified pencil graphite electrode (Ni?Cu/PGE) was fabricated and used as non‐enzymatic sensor for glucose determination. Ni and copper were electrodeposited on PGE using cyclic voltammetry. Morphology and composition of the modified PGE electrode were characterized by field‐emission gun scanning electron microscopy (FEG‐SEM), energy‐dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT‐IR). Electrochemical oxidation of glucose was evaluated by cyclic voltammetry as well as by amperometry. Electrochemical measurements indicate that the Ni?Cu/PGE exhibits a high sensitivity of 2951 μA mM?1 cm?2, and a low detection limit of 0.99 μM which are, respectively, three times higher and twice lower than that on Ni/PGE prepared in the same conditions. Moreover, Ni?Cu/PGE exhibits a wider linear range from 1 to 10000 μM with a rapid response time within 2 s. Moreover, Ni?Cu/PGE showed a remarkable stability. The electrode was successfully applied for determination of glucose concentration in human blood without significant interference from potential endogenic interferents. The good applicability of the elaborated sensor made Ni?Cu/PGE promising for the development of effective and inexpensive non‐enzymatic glucose sensor.  相似文献   

12.
The facile, efficient, and straightforward preparation of electrode material for energy storage devices has drawn considerable interest for practical applications. In this study, we have synthesized the polyhedron Cu-doped ZnS (ZnS:Cu) structure on carbon cloth (CC) using a single-step glycol-assisted process. The highly interconnected polyhedron shaped ZnS:Cu functions as positive electrode material in an aqueous electrolyte for supercapacitor application. The ZnS:Cu polyhedron-like structures with higher electroactive sites and synergistic effect exhibited higher specific capacitance of 468 F g?1 at 1 Ag?1 and cycling stability of 890.5% after 5,000 cycles. The better electrochemical performance and higher cycling stability of ZnS:Cu can be dedicated to interconnected polyhedron-like structures, doping of Cu in ZnS, and binder-free electrode design. This underlines the potential of the Cu-doped ZnS-based supercapacitor for next-generation energy storage devices.  相似文献   

13.
A chemically modified electrode was constructed for rapid, simple, accurate, selective and highly sensitive simultaneous determination of Cu(II) and Cd(II) using square wave anodic stripping voltammetry. The electrode was prepared by incorporation of SiO2 nanoparticles, coated with a newly synthesized Schiff base, in carbon paste electrode. The limit of detection was found to be 0.28 ng mL?1 and 0.54 ng mL?1 for Cu(II) and Cd(II), respectively. The proposed chemically modified electrode was used for the determination of copper and cadmium in several foodstuffs and water samples.  相似文献   

14.
The surface enhanced Raman spectrum of benzotriazole (BTAH) adsorbed on a copper electrode has been studied as a function of the potential applied to the electrode. The effect of pH and of the type of halide in the electrolyte solution has also been investigated. The presence of some complexes involving Cu(I), benzotriazole or benzotriazolate (BTA-) and the halide has been characterized. The protective film formed on copper surface, in the presence of benzotriazole, has been identified as cuprous benzotriazolate [Cu(I)BTA].  相似文献   

15.
Ag and Cu were deposited in submonolayer amounts onto Pt electrodes at constant cathodic potentials within the hydrogen adsorption region. Rectangular pulses of Cu2+ or Ag+ fluxes to the Pt surface were generated by a Cu or Ag generator electrode using the twin electrode thin-layer technique. The analysis of the response currents of the Pt electrode yields in formation about the metal deposition process at non-equilibrium conditions. Cu and Ag were found to deposit directly as monolayers and not at random. The displacement of adsorbed hydrogen was measured as a function of the quantity of metal deposited.  相似文献   

16.
The cyanide oxidation on vitreous carbon (VC), stainless steel 304 (SS 304) and titanium (Ti) was investigated through a voltammetric study of cyanide solutions also containing copper ions. Results showed that cyanide oxidation occurs by means of a catalytic mechanism involving adsorbed species as CN, Cu(CN)43– or Cu(CN)42– depending on the electrode material. It was observed that on VC, the adsorption of Cu(CN)43– controlled the oxidation rate. Instead, for SS 304 and Ti, the adsorption of CN controlled the global process. However, in all cases, the adsorption of Cu(CN)43– on the electrode surface was required for the catalytic oxidation of CN. Voltammetric experiments for solutions containing cyanide oxidation products, such as cyanogen (CN)2 and cyanate (CNO), confirmed that the adsorbed species mentioned above controlled the catalytic oxidation of CN depending on the electrode material. A voltammetric identification of the oxidation products showed that cyanogen, (CN)2 tended to adosorb on VC, while the formation of cyanate, CNO predominated on SS 304.  相似文献   

17.
Summary The cathodic reduction of Cu(II) ions at a gold electrode has been studied in waterpyridine mixtures containing NaClO4 as background electrolyte by means of rotating disc (RDE) and ring-disc electrode voltammetry (RRDE), coulometry, and potentiometry. The voltammetric curves obtained at the RDE split into two waves of nearly the same height which correspond to two successive reactions: Cu(II) + e Cu(I) and Cu(I) + e Cu. The diffusion coefficients of Cu(II) as well as the formal potentials and kinetic parameters of the Cu(II)/Cu(I) electrode reaction were evaluated and are discussed. In addition, some experiments with an electrochemical quartz crystal microbalance (EQCM) were performed in order to explain the pyridine adsorption on polycrystalline gold.
Mechanismus und Kinetik der elektrochemischen Reduktion von Cu(II)-Ionen an einer Goldelektrode in Wasser-Pyridin-Mischungen
Zusammenfassung Die kathodische Reduktion von Cu(II)-Ionen an Gold in Wasser-Pyridin-Mischungen mit NaClO4 als Grundelektrolyt wird mittels Voltammetrie an der rotierenden Scheiben- und Ring-Scheibenelektrode sowie mittels Coulometrie und Potentiometrie untersucht. Die erhaltenen Stromspannunskurven verteilen sich auf zwei Stufen, die den konsekutiven Durchtrittsreaktionen Cu(II) + e Cu(I) und Cu(I) + e Cu entsprechen. Die Diffusionskoeffizienten der Cu(II)-Ionen sowie die Formal-Standardpotentiale und die kinetischen Parameter der Cu(II)/Cu(I)-Durchtrittsreaktion wurden bestimmt und werden diskutiert. Zusätzliche Experimente zur Erklärung der Adsorption von Pyridin an polykristallinem Gold wurden mit Hilfe einer elektrochemischen Quarz-Mikrowaage durchgeführt.
  相似文献   

18.
In this work, a novel Cu?zeolite A/graphene modified glassy carbon electrode was applied for the determination of rutin. The Cu?zeolite A/graphene composites were prepared using copper doped zeolite A and graphene oxide as the precursor, subsequently reduced by chemical agents. Based on the Cu?zeolite A/graphene modified electrode, the overpotential of the rutin oxidation was lowered by ~300 mV. Also the proposed Cu?zeolite A/graphene modified electrode showed higher electrocatalytic performance than zeolite A/graphene electrode or graphene modified electrode. The electrochemical behavior of copper incorporated in the zeolite A modified electrode illustrated the adsorption-controlled reaction at the modified electrode. The behavior of electrocatalytic oxidation of rutin at the modified electrode was investigated. The diffusion coefficient of rutin was equal to 4.2 × 10–7 cm2/s. A linear calibration graph was obtained for rutin over the concentration range of 2.3 × 10–7–2.5 × 10–3 M. The detection limit for rutin was 1.2 × 10–7 M. The RSDs of 10 replicate measurements performed on a single electrode at rutin concentrations between 2.3 × 10–7–2.5 × 10–3 M were between 1.1 and 2.1%. Study of the influence of potentially interfering substances on the peak current of rutin showed that the method was highly selective. The proposed electrode was used for the determination of rutin in real samples with satisfactory results.  相似文献   

19.
Potential-modulated DNA cleavage in the presence of copper–ethylenediamine (en) and –ethylenediamine tetraacetic acid (EDTA) complexes was investigated at a gold electrode in a thin layer cell. DNA can be efficiently cleaved through production of active oxygen species at −0.50 V (vs. Ag/AgCl/KCl(sat)) by reducing Cu(en)22+ to Cu(en)2+ or Cu(EDTA)2− to Cu(EDTA)3−. The extent of DNA cleavage increased as the working potential was shifted more negative and the electrolysis time was increased in air-saturated solution. When a small flow of O2 was passed through the solution during electrolysis, the extent of DNA cleavage was dramatically enhanced. In the absence of Cu(en)22+ or Cu(EDTA)2− complex, slight DNA cleavage was observed at a more negative working potential due to the reduction of oxygen at the electrode. This observation suggests that potential-modulated DNA cleavage was caused mainly by electrochemical reduction of the Cu(en)22+ or Cu(EDTA)2− complex in the presence of oxygen. The cleaved DNA fragments were separated by high performance liquid chromatography (HPLC). The experimental results proved that this method of potential-modulated DNA cleavage by Cu(en)22+ and Cu(EDTA)2− complexes is simple, mild and highly efficient.  相似文献   

20.
The irreversible reduction of nitrate to nitrite at a cadmium electrode in slightly alkaline solution is electrocatalyzed by copper deposited on the electrode surface. Mass transport-limited currents were observed at a Cu—Cd disc electrode to rotational velocities of 1050 rad s-1 (10000 rev. min-1). Electron mugraphs revealed that the copper is plated as closely packed muspheres less than 1 μm in diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号