首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 883 毫秒
1.
Here we describe the extraction from soil of the major photo-transformation products (PTPs) of enrofloxacin (ENR) and danofloxacin (DAN), two fluoroquinolones (FQs) widely used in veterinary medicine and of growing environmental concern, because their PTPs have been shown to retain high antibacterial activity. The microwave-assisted extraction (MAE) technique developed previously for determination of FQs, and based on use of an alkaline aqueous solution of Mg(2+) as a complexing agent for the analytes, was applied to agricultural soil samples fortified with different amounts of the PTPs and residues of the parent compounds (53-1000 ng g(-1) for ENR, 24-148 ng g(-1) for DAN). The PTPs, obtained by irradiation of thin layers of the two drugs, were, after extraction, separated and quantified by HPLC-FD. Good recovery (70-130%) and precision (RSDs 1-6% for repeatability and 9-22% for reproducibility) were obtained by use of the overall analytical procedure. The method was applied for the first time to study the in-soil lifecycle of ENR and DAN PTPs, generated in the matrix by irradiation under natural sunlight, at environmentally significant concentrations. Results indicated that soil-adsorbed FQ PTPs are themselves liable to photodegradation and have lifetimes comparable with those of parent compounds.  相似文献   

2.
A solid-phase extraction (SPE) and liquid chromatographic (LC) method was developed for the determination of selected fluoroquinolone (FQ) drugs including ofloxacin, norfloxacin, and ciprofloxacin in municipal wastewater samples. Extraction of the FQs was carried out with a weak cation exchanger SPE cartridge, the Oasis WCX. The cartridge was washed with water and methanol as a cleanup before the FQs were eluted by a mixture of methanol, acetonitrile, and formic acid. Separation of the FQs was achieved by using a Zorbax SB-C8 column under isocratic condition at a flow rate of 0.2mL/min. Recoveries of the FQs in spiked final effluent samples were between 87 and 94% with a relative standard deviation of less than 6%. Several techniques have been evaluated for the detection of FQs in sewage extracts; they included fluorescence detection and electrospray ionization (ESI) mass spectrometry using either mass-selective detection or tandem mass spectrometry (MS/MS). When they were applied to sewage influent and effluent samples, the LC-MS/MS technique operating in the multiple reaction monitoring (MRM) mode proved to be best suited for the determination of FQs in sewage samples as it provided the highest sensitivity (limit of quantification 5ng/L) and selectivity. The observation of signal suppression (matrix effect) for some FQs in ESI LC-MS and LC-MS/MS is discussed and a solution is proposed. The three FQs were detected in all the sewage samples tested in this work, with median concentrations between 34 and 251ng/L.  相似文献   

3.
An effective analytical protocol using graphene‐based SPE coupled with HPLC‐MS/MS for determination of chloramphenicol (CAP) in aquatic products has been developed. In the present work, graphene was evaluated as SPE sorbents for the analytes enrichment and clean up. The target analytes were quantified by a triple‐quadrupole linear ion trap MS in multiple‐reaction monitoring mode. In addition, the proposed method was validated according to Commission Decision 2002/657/EC. The calibration curve was linear over the range of 0.5–100 ng/mL. The mean values of RSD of intra‐ and interday ranging from 1.48 to 4.29% and from 3.25 to 7.42% were obtained, respectively. In the three fortified levels, the recoveries of CAP ranging from 92.3 to 103.4% with RSDs ≤ 5.58% were obtained. The proposed method has been successfully applied to the analysis of CAP in several aquatic product samples, indicating that graphene was a potential SPE sorbent for the enrichment of trace residues in food samples.  相似文献   

4.
A simple in‐line single drop liquid–liquid–liquid microextraction (SD‐LLLME) coupled with CE for the determination of two fluoroquinolones was developed. The method is capable to quantify trace amount of analytes in water samples and to improve the sensitivity of CE detection. For the SD‐LLLME, a thin layer of organic phase was used to separate a drop of 0.1 M NaOH hanging at the inlet of the capillary from the aqueous donor phase. By this way, the analytes were extracted to the acceptor phase through the organic layer based on their acidic/basic dissociation equilibrium. The drop was immersed into the organic phase during 10 min for extraction and then it is directly injected into the capillary for the analysis. Parameters such as type and volume of organic solvent phase, aqueous donor, and acceptor phases and extraction time and temperature were optimized. The enrichment factor was calculated, resulting 40‐fold for enrofloxacin (ENR) and sixfold for ciprofloxacin (CIP). The linear range were 20–400 μg/L for ENR and 60–400 μg/L for CIP. The detection limits were 10.1 μg/L and 55.3 μg/L for ENR and CIP, respectively, and a good reproducibility was obtained (4.4% for ENR and 5.6% for CIP). Two real water samples were analysed applying the new method and the obtained results presented satisfactory recovery percentages (90–100.3%).  相似文献   

5.
An optimized method for the determination of five synthetic polycyclic: celestolide (ADBI), phantolide (AHMI), traseolide (ATII), galaxolide (HHCB), tonalide (AHTN), and two nitro‐aromatic musks: musk xylene (MX) and musk ketone (MK), in water samples is described. The method involves a dispersive micro solid‐phase extraction (D‐μ‐SPE) plus ultrasound‐assisted solvent desorption (UASD) prior to their determination by gas chromatography‐mass spectrometry (GC‐MS) using the selected ion storage (SIS) mode. Factors affecting the extraction efficiency of the target analytes from water samples and ultrasound‐assisted solvent desorption were optimized by a Box‐Behnken design method. The optimal extraction conditions involved immersing 10.1 mg of a typical octadecyl (C18) bonded silica adsorbent (i.e., ENVI‐18) in a 50 mL water sample. After 10.4 min of extraction by vigorously shaking, the adsorbent was collected and dried on a filter, and the target musks were desorbed by ultrasound‐assisted for 38 sec with n‐hexane (200 μL) as the desorption solvent. A 10 μL aliquot was then directly determined by large‐volume injection GC‐MS. The limits of quantitation (LOQs) were 1.2 to 5 ng/L. The precision for these analytes, as indicated by relative standard deviations (RSDs), were less than 11% for both intra‐ and inter‐day analysis. Accuracy, expressed as the mean extraction recovery, was between 74% and 92%. A preliminary analysis of the effluents from municipal wastewater treatment plants (MWTP) and river water samples revealed that HHCB and AHTN were the two most commonly detected synthetic musks; their concentration were determined to range from 88 to 690 ng/L for effluent samples, and 5 to 320 ng/L for river water samples. This is a simple, low cost, effective, and eco‐friendly analytical method.  相似文献   

6.
In this work, we have compared the selectivity of two commercial molecularly imprinted polymers (AFFINIMIP®SPE Estrogens and AFFINIMIP®SPE Zearalenone) for the extraction of 12 estrogenic compounds of interest (i.e. 17α‐estradiol, 17β‐estradiol, estrone, hexestrol, 17α‐ethynylestradiol, diethylstibestrol, dienestrol, zearalenone, α‐zearalanol, β‐zearalanol, α‐zearalenol and β‐zearalenol) from different water samples. High‐performance liquid chromatography coupled with ion trap mass spectrometry with electrospray ionization was used for their determination. Results showed that although both molecularly imprinted polymeric cartridges were specifically designed for different groups of analytes (natural estrogens like estradiol in the first case and zearalenone derivatives in the second) they nearly have the same extraction performance (with recovery values in the range 65–101%) for the same analytes in Milli‐Q water because of the cross‐reactivity of the polymer. However, when more complex water samples were analyzed, it was clear that the behavior was different and that the AFFINIMIP®SPE Estrogens showed less cross‐reactivity than the other cartridge. Validation of the proposed methodology with both cartridges revealed that the extraction was reproducible and that the final limits of detection of the proposed method were in the low ng/L range.  相似文献   

7.
A multiresidue method for screening of emerging contaminants in aquatic environments was developed. The method was based on sample pretreatment with solid phase extraction (SPE) and analysis with an ultra performance liquid chromatograph-time-of-flight mass spectrometer (UPLC-TOF-MS). The method was optimized and tested with standard solutions of model compounds containing 84 pesticides and pharmaceuticals. Four different SPE sorbents were evaluated to gain maximum recovery for the analytes. For the final procedure a combination of two different sorbents was chosen. In spite of high matrix suppression, the method quantification limits (MQLs) were acceptable. Therefore, the method can be used for screening known target compounds. The applicability of the method for posttarget and nontarget screening will be reported later. To preliminarily assess the quantitative performance of the method, some compounds in wastewater effluent were quantified using the standard addition method. Three pesticides and eight pharmaceuticals were found in concentrations up to ~2200 ng/L.  相似文献   

8.
A new sample clean-up procedure based on solid-phase extraction (SPE) sorbents was proposed for the determination of pesticides, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in soils and sediments. The main purpose of the research was to find a combination of sorbents for the SPE method that would permit the determination of many types of analytes (polycyclic aromatic hydrocarbons, polychlorinated biphenyls, N-, P- and Cl-containing pesticides) in a single run. Elution profiles for both the analytes and the interfering components were determined for several types of SPE sorbents (alumina, silica and surface-modified silica) and combinations of them. The efficiency of the clean-up method developed was evaluated using real soil samples.  相似文献   

9.
A robust procedure for the determination of 16 US EPA PAHs in both aqueous (e.g. wastewaters, industrial discharges, treated effluents) and solid samples (e.g. suspended solids and sludge) from a wastewater treatment plant (WWTP) is presented. Recovery experiments using different percentages of organic modifier, sorbents and eluting solvent mixtures were carried out in Milli-Q water (1000 mL) spiked with a mixture of the PAH analytes (100 ng/L of each analyte). The solid phase extraction (SPE) procedures applied to spiked waste water samples (1000 mL; 100 ng/L spiking level) permitted simultaneous recovery of all the 16PAHs with yields >70% (6-13% RSD). SPE clean up procedures applied to sewage and stabilized sludge extracts, showed percent recoveries in the range 73-92% (7-13% RSD) and 71-89% (7-12% RSD), respectively. The methods were used for the determination of PAHs in aqueous and solid samples from the WWTP of Fusina (Venice, Italy). Mean concentrations, as the sum of the 16PAHs in aqueous and suspended solid samples, were found to be approx. in the 1.12-4.62 microg/L range. Sewage and stabilized sludge samples contained mean PAH concentrations, as sum of 16 compounds, in the concentration range of 1.44-1.26 mg/kg, respectively. Extraction and clean up procedures for sludge samples were validated using EPA certified reference material IRM-104 (CRM No. 912). Instrumental analyses were performed by coupling HPLC with UV-diode array detection (UV-DAD) and fluorescence detection (FLD).  相似文献   

10.
Seven polymeric solid-phase extraction (SPE) sorbents were evaluated with regard to their ability to extract acidic, neutral and basic pharmaceuticals and estrogens simultaneously from water at neutral pH. Highest recoveries (70-100%) for the majority of the analytes were obtained with styrene-methacrylate and styrene-N-vinylpyrrolidone co-polymers. The latter one (Oasis HLB) was chosen for further refinement of an extraction method for the quantitative determination of acidic and neutral drugs in surface water samples at detection limits below 1 ng/l. A sequential elution protocol was applied for clean-up and separation of the extracted analytes into fractions suitable for further compound specific processing. The neutral analytes as well as the acidic compounds after derivatisation were quantified by GC-MS. Caffeine, ibuprofen, its metabolites and diclofenac were detected in river water samples in the 1-100 ng/l range.  相似文献   

11.
A simple and reliable method was developed to detect two basic synthetic dyes, rhodamine B (RB) and rhodamine 6G (R6G), in wastewater and surface water samples by high performance liquid chromatography with fluorescence detection (HPLC‐FLD). These dyes have been reported to be both mutagenic and carcinogenic in various organisms. The contents of these two dyes in water samples were extracted by Oasis HLB solid‐phase extraction (HLB‐SPE), and were then determined by an isocratic HPLC using an Atlantis® T3‐C18 column. Water samples at various pH conditions and the compositions of eluents for SPE were evaluated. The results indicate that the proposed method is precise and sensitive in analyzing these two basic synthetic dyes, and the limits of quantitation were 1.5 ng/L for RB and 0.3 ng/L for R6G in 100 mL of water samples. The recovery of analytes in spiked surface water and municipal wastewater treatment plant (WWTP) effluent samples ranged from 61 to 90% with the precision (RSD) ranging from 2 to 12%. The concentrations of analytes were detected in various water samples ranging from 0.7 to 81 ng/L.  相似文献   

12.
Summary An HPLC method with electrochemical detection has been developed for the determination of clozapine and its main metabolites, desmethylclozapine and clozapine N-oxide, in human plasma. An accurate pretreatment of the biological samples was implemented by means of solid phase extraction (SPE) on HLB cartridges. This improved pretreatment, together with a new mobile phase, allows for the accurate determination of clozapine N-oxide, which could not be quantitated by a previous method. The method uses only 100 μL of plasma for one complete analysis and shows good recovery values for all three analytes. The eluates from the SPE procedure were chromatographed in a reversed phase C18 column using a mobile phase composed of phosphate buffer, acetonitrile and methanol. Clozapine, desmethylclozapine and clozapine N-oxide were eluted in less than 10 minutes, without any interference from the biological matrix. Linearity was observed over the 2.50–150 ng mL−1 (clozapine and desmethylclozapine) or 1.25–75 ng mL−1 clozapine N-oxide) range for the three analytes, with satisfactory repeatability values. The limit of detection was 0.3 ng mL−1 for clozapine and desmethylclozapine, samples of patients treated with Leponex gave good results. No interference from other common central nervous system drugs was found. This method seems to be a useful tool for pharmacokinetic studies and for clinical monitoring, because of its need for small plasma samples and its high sensitivity and selectivity.  相似文献   

13.
Msagati TA  Nindi MM 《Talanta》2006,69(1):243-250
Supported liquid membrane (SLM) and solid phase extraction (SPE) have been applied as clean-up and/or enrichment techniques for a mixture of five benzimidazole anthelmintics compounds, namely albendazole, fenbendazole, mebendazole, oxibendazole, and thiabendazole. Two biological matrices, mainly urine and milk, and ultra high purity (UHP) water were spiked with a mixture of these five compounds. Waters Oasis® MCX and International Sorbent Technology (IST) HCX SPE sorbents were used. The liquid membrane used for clean-up and/or enrichment of these compounds was 5% tri-n-octylphosphine oxide (TOPO) dissolved in n-undecane/di-n-hexyl ether (1:1). The SLM extraction efficiencies and SPE percentage recoveries ranged between 60 and 100%. The detection limits (DLs) for different benzimidazole compounds by SPE/LC-ES-MS for thiabendazole, oxibendazole, and albendazole was 0.1 ng/L, for fenbendazole and mebendazole was 1 and 10 ng/L, respectively. Similarly, the detection limits of SLM/LC-ES-MS for thiabendazole, oxibendazole, and albendazole was 0.1 ng/L and for fenbendazole and mebendazole was 1 ng/L. The results of optimization of various parameters of the SLM method are reported.  相似文献   

14.
In this article, the combination of commercial polymeric microparticles (OASIS MCX) and cobalt ferrite nanoparticles is evaluated in dispersive micro-solid phase extraction (D-μSPE) for the determination of six nitroaromatic hydrocarbons in water. The high affinity of the polymeric material toward the target analytes as well as the magnetic behavior of cobalt ferrite nanoparticles are combined in a synergic way to developed an efficient and simple D-μSPE approach. The sorptive performance of the hybrid material is compared with that most usual sorbents and the effect of its synthesis steps on the extraction capability is also evaluated in depth. After the optimization of selected variables, D-μSPE method was assessed in terms of linearity, sensitivity, precision and accuracy. The new extraction method allows the determination of the target compounds with limits of detection in the range from 0.12 to 1.26 μg/L and relative standard deviations lower than 9.6%. The recovery study was performed in two different water samples obtaining percentages from 71 to 103%, which demonstrated the applicability of the hybrid sorbent for the selected analytical problem.  相似文献   

15.
A novel sorbent for the determination of clenbuterol in bovine liver.   总被引:2,自引:0,他引:2  
E Horne  M O'Keeffe  C Desbrow  A Howells 《The Analyst》1998,123(12):2517-2520
The use of three C18 sorbents in matrix solid phase dispersion (MSPD) for the determination of clenbuterol in bovine liver fortified at 5 ng g-1 is described. MSPD grade C18 sorbents give rise to more efficient blending and packing of the material for subsequent washing and analyte elution in comparison with a non-MSPD grade C18 sorbent. Following enzymatic deconjugation of the liver extracts, radioimmunoassay is used as the method of determination. The mean recovery of clenbuterol with all sorbents is comparable and within the range 86-96% in two intra-assay studies (n = 3). The liver extracts in each case are highly coloured. The variation in recovery is observed to be lowest with MSPD grade C18 (end-capped). This sorbent was used in further studies to evaluate the use of solid phase extraction (SPE), post MSPD, with normal phase aminopropyl or mixed mode cation exchange columns for extract purification. The mean recovery of clenbuterol (n = 4, inter-assay study) following MSPD and normal phase SPE clean-up was 95 +/- 15% and 89 +/- 9% at fortification levels of 1 and 2.5 ng g-1, respectively.  相似文献   

16.
The molecularly imprinted SPE directly coupled to RP LC‐MS/MS method has been developed and successfully validated for the determination of six hormones in water and sediment samples. The method is based on the use the home‐made column filled with a molecularly imprinted sorbent (imprinted against estrogens) that was used under nonaqueous conditions. Thus, its high selectivity could be utilized resulting in low matrix components’ coextraction. The method showed excellent recovery (92–105%) and satisfactory sensitivity (LOQs water: 1.9–4.0 ng/L; LOQs sediment: 0.2–0.5 ng/g). The intra‐ and interprecision for water and sediment was in the range of 4.0–6.0% and 4.4–7.6%, respectively. Finally, 20 water and sediment samples collected from the Svratka river were analyzed. Only estrone was quantified in eight water samples (4.4–7.1 ng/L); no analytes were found in sediment samples.  相似文献   

17.
A simple multiresidue method, HPLC with programmable fluorescence detection and gradient elution, has been developed for analysis of nine (fluoro)quinolones (FQs)—norfloxacin, ciprofloxacin, lomefloxacin, danofloxacin, enrofloxacin, sarafloxacin, difloxacin, oxolinic acid, and flumequine in chicken muscle. The samples were extracted with phosphate-buffered saline (PBS, 0.01 mol L?1, pH 7.0) and cleaned by SPE. Cleaned extracts reconstituted in different solvents were tested to determine which gave the maximum fluorescence response for each drug. PBS (0.01 mol L?1, pH 7.0) was used as reconstitution solvent, because the sensitivity for FQs dissolved in PBS was 1.8–3.2 times greater than when dissolved in the mobile phase. Under the optimum conditions excellent linearity was obtained, with satisfactory correlation coefficients (r > 0.9994) for PBS. The “matrix effect” was eliminated. Limits of quantification for each drug were in the range 0.3–1.0 ng g?1. In fortification studies recoveries of the analytes were in the range 71.8–102.1% for 1–100 ng g?1 concentrations. Inter- and intra-day coefficients of variation were from 0.5 to 5.2% and from 1.7 to 9.0%, respectively. Short-term stability in PBS was also determined.  相似文献   

18.
An at-line analysis protocol is presented that allows the determination of four UV filters, two polycyclic musk compounds and caffeine in water at concentration level of ng L−1. The fully automated method includes analytes enrichment by Microextraction by packed sorbent (MEPS) coupled directly to large volume injection-gas chromatography–mass spectrometry. Two common SPE phases, C8 and C18, were examined for their suitability to extract the target substances by MEPS. The analytes were extracted from small sample volumes of 800 μL with recoveries ranging from 46 to 114% for the C8-sorbent and 65–109% for the C18-sorbent. Limits of detection between 34 and 96 ng L−1 enable the determination of the analytes at common environmental concentration levels. Both sorbents showed linear calibration curves for most of the analytes up to a concentration level of 20 ng mL−1. Carryover was minimized by washing the sorbents 10 times with 100 μL methanol. After this thorough cleaning, the MEPS are re-used and up to 70 analyses can be performed with the same sorbent. The fully automated microextraction GC–MS protocol was evaluated for the influence of matrix substances typical for wastewater. Dilution of samples prior to MEPS is recommended when the polar caffeine is present at high concentration. Real water samples were analyzed by the MEPS-GC–MS method and compared to standard SPE.  相似文献   

19.
A new, sensitive method for the determination of oncopterin, biopterin, and neopterin in human urine has been developed using SPE with 6,7‐dimethylpterin as internal standard and gradient HPLC with fluorescence detection. SPE was tested for the pre‐treatment of urine samples on different types of sorbents (strong ion exchange resins, polar adsorbents, and reversed‐phase sorbents). RP‐SPE with subsequent evaporation of eluate has been found to be the most appropriate. The extraction efficiency exceeded 95% for all selected pterins. The extracted pterins were subsequently analyzed on a Purospher RP‐18 RP column. The LOD of oncopterin was 1.43 nmol/L of urine. The intra‐day and inter‐day imprecision at a physiological oncopterin concentration never exceeded 10%. The potential of this method was tested using urine samples of healthy volunteers and cancer patients without methotrexate therapy.  相似文献   

20.
The determination of organochlorine pesticides in water samples, which are harmful to humans, is very important for environmental risk assessment. Based on the excellent adsorption properties of graphene, an SPE coupled with GC–MS method for the monitoring of organochlorines (four hexachlorcyclohexanes and four dichlorodiphenyltrichloroethanes) was developed. Owing to the hydrophobic interaction and π–π stacking interaction between the analytes and graphene, the analytes quantitatively adsorbed onto the graphene‐based SPE cartridge were eluted by ethyl acetate for analysis. Several parameters influencing the analytical performance, such as the kind of elution, sample volume, reusability of the cartridge, have been investigated in detail. Under the optimal conditions, detection of limits of 1.95–9.38 ng/L, recoveries of 83.9–107.3% at two spiked concentration levels (0.1 and 10 ng/mL) and RSDs in the range of 2.9–7.4% for real water samples were obtained for all the analytes. This work reveals the great potential of graphene in sample preparation procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号