首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomarkers, 25‐hydroxyvitamin D3 and 25‐hydroxyvitamin D2, are important indicators of the vitamin D general status and are monitored in several pathophysiological disorders, such as osteoporosis, diabetes, heart disease, etc. A novel ultra‐HPLC with MS/MS methodology for the analysis of 25‐hydroxyvitamin D derivatives coupled with a very simple and highly rapid sample preparation step was developed. Analytical parameters obtained showed linearity (R2) above 0.999 for both vitamins with accuracies between 95.8 and 102%. The LODs were as low as 0.22 and 0.67 nmol/L for 25‐hydroxyvitamin D3 and 25‐hydroxyvitamin D2, respectively. Intra‐assay precision (%RSD) was lower than 4.5%, and inter‐assay precision (%RSD) was lower than 6.5%. The feasibility of the developed methodology to be applied in clinical routine analysis has been proved by its application in blood samples from non‐agenarian patients, patients with familial hypercholesterolemia and patients suffering from age‐related macular degeneration.  相似文献   

2.
Vitamin D deficiency in an infant is associated with a wide range of adverse health outcomes in later life. A method for the quantification of 25‐hydroxyvitamin D3 [25(OH)D3, the best‐established indicator of vitamin D status] in neonatal dried blood spots (DBSs) using LC/ESI‐MS/MS has been developed and validated. The method employed two steps of derivatization, a Diels–Alder reaction with 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione followed by acetylation, to enhance the detectability of 25(OH)D3 in ESI‐MS/MS and to separate 25(OH)D3 from 3‐epi‐25‐hydroxyvitamin D3 [3‐epi‐25(OH)D3], a potent interfering metabolite. 25(OH)D3 was extracted from two DBS punches (3 mm in diameter, equivalent to 5.3 μL of whole blood), purified using an Oasis HLB® cartridge, and subjected to derivatization prior to analysis with LC/ESI‐MS/MS. 25‐Hydroxyvitamin D4 was used as the internal standard. This method was reproducible (intra‐ and inter‐assay RSDs, <6.9%) and accurate (analytical recovery, 95.2–102.7%), and the LOQ was 3.0 ng/mL. The developed method enabled specific quantification of 25(OH)D3 in neonatal DBSs and detection of vitamin D deficiency without interference from 3‐epi‐25(OH)D3.  相似文献   

3.
Fat‐soluble vitamins play a pivotal role in the progression of atherosclerosis and the development of cardiovascular disease. Therefore, plasma monitoring of their concentrations may be useful in the diagnosis of these disorders as well as in the process of treatment. The study aimed to develop and validate an HPLC–MS/MS method for determination of retinol, α‐tocopherol, 25‐hydroxyvitamin D2 and 25‐hydroxyvitamin D3 in plasma of patients with cardiovascular disease. The analytes were separated on an HPLC Kinetex F5 column via gradient elution with water and methanol, both containing 0.1% (v/v) formic acid. Detection of the analytes was performed on a triple‐quadrupole MS with multiple reaction monitoring via electrospray ionization. The analytes were isolated from plasma samples with liquid–liquid extraction using hexane. Linearity of the analyte calibration curves was confirmed in the ranges 0.02–2 μg/mL for retinol, 0.5–20 μg/mL for α‐tocopherol, 5–100 ng/mL for 25‐hydroxyvitamin D2 and 2–100 ng/mL for 25‐hydroxyvitamin D3. Intra‐ and inter‐assay precision and accuracy of the method were satisfactory. Short‐ and long‐term stabilities of the analytes were determined. The HPLC‐MS/MS method was applied for the determination of the above fat‐soluble vitamin concentrations in patient plasma as potential markers of the cardiovascular disease progression.  相似文献   

4.
Our investigation of the analysis of vitamin D3 metabolites has been reviewed. The development of high‐performance liquid chromatographic methods for the quantitative determination of 25‐hydroxyvitamin D3 3‐sulfate and 25‐hydroxyvitamin D3, which are the major circulating metabolites of vitamin D3 in human serum/plasma, has been described. The developed methods were applied to the determination of the correlation between the concentration of the sulfate and its genin in healthy subjects and patients with chronic renal failure. The development of immunoaffinity chromatography immobilizing the highly specific anti‐1,25‐dihydroxyvitamin D3 antibody for the pretreatment of radioreceptor assay of 1,25‐dihydroxyvitamin D3, which is the active metabolite of vitamin D3, is also described.  相似文献   

5.
Most methods for the quantification of physiological levels of vitamin D3 and 25‐hydroxyvitamin D3 are developed for food analysis where the sample size is not usually a critical parameter. In contrast, in life science studies sample sizes are often limited. A very sensitive liquid chromatography with tandem mass spectrometry method was developed to quantify vitamin D3 and 25‐hydroxyvitamin D3 simultaneously in porcine tissues. A sample of 0.2–1 g was saponified followed by liquid–liquid extraction and normal‐phase solid‐phase extraction. The analytes were derivatized with 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione to improve the ionization efficiency by electrospray ionization. The method was validated in porcine liver and adipose tissue, and the accuracy was determined to be 72–97% for vitamin D3 and 91–124% for 25‐hydroxyvitamin D3. The limit of quantification was <0.1 ng/g, and the precision varied between 1.4 and 16% depending on the level of spiking. The small sample size required for the described method enables quantification of vitamin D3 and 25‐hydroxyvitamin D3 in tissues from studies where sample sizes are limited.  相似文献   

6.
The screening of vitamin D deficiency in neonatal infants, which is based on the blood 25‐hydroxyvitamin D3 [25(OH)D3] quantification, is important for the early detection, diagnosis and health risk assessment of several diseases. In this study, two new Cookson‐type reagents, 4‐(4‐diethylaminophenyl)‐1,2,4‐triazoline‐3,5‐dione (DEAPTAD) and 4‐(6‐quinolyl)‐1,2,4‐triazoline‐3,5‐dione, were designed and synthesized, then compared with the previous reagents, 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione (PTAD) and 4‐(4‐dimethylaminophenyl)‐1,2,4‐triazoline‐3,5‐dione (DAPTAD), in terms of sensitivity and specificity in the assay of 25(OH)D3 in neonatal blood samples by liquid chromatography/electrospray ionization–tandem mass spectrometry. Among the reagents, DEAPTAD was found to be the most promising. The limit of detection (0.38 fmol on the column) of the DEAPTAD‐derivatized 25(OH)D3 was 60 and 2 times lower than those of the intact 25(OH)D3 and the PTAD derivative, respectively. 25(OH)D3 was more clearly detected in the plasma sample as the DEAPTAD derivative than the DAPTAD derivative owing to the lower background noise. DEAPTAD derivatization was also useful for the separation of 25(OH)D3 from a potent interfering metabolite, 3‐epi‐25‐hydroxyvitamin D3. By using DEAPTAD, a trace amount of 25(OH)D3 in dried blood spots was reproducibly determined without interference from coexisting compounds. Thus, DEAPTAD was proved useful in the measurement of 25(OH)D3 in neonatal blood samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Two physiologically important forms of vitamin D exist: vitamin D2 and vitamin D3, which by liver based hydroxylase enzymes are converted to 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3, respectively. These hydroxylated metabolites of vitamin D are measured in plasma to assess the vitamin D status of animals and humans. Therefore cheap and reliable analytical methods are very much in demand in nutritional and physiological research. After saponification and extraction of plasma or serum samples the current method uses reverse phase high performance liquid chromatography on a C30 column and with UV detection at 265 nm for quantifying vitamin D2, vitamin D3, 25-hydroxyvitamin D2, and 25-hydroxyvitamin D3. The method proved versatile with respect to plasma lipid content, sample amount, and plasma concentration of the vitamin D metabolites as it was tested using plasma from six different species: cattle, pigs, poultry, mink, horses, and humans. In cattle plasma recoveries were between 86.6 and 101.0%, within day error between 0.9 and 5.9%, and between day error between 0.2 and 1.7%. However, depending on species and sample amount error percentages varied. When running the method on standard reference material® 972 “Vitamin D in human serum” from the National Institute of Standards and Technology (NIST) (Gaithersburg, USA) the results for 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 concentrations were within the boundaries provided by NIST, reflected by Z-scores between 0.1 and 0.9.  相似文献   

8.
Milk is an important source of nutrients for various risk populations, including infants. The accurate measurement of vitamin D in milk is necessary to provide adequate supplementation advice for risk groups and to monitor regulatory compliance. Currently used liquid chromatography–tandem mass spectrometry (LC–MS/MS) methods are capable of measuring only four analogues of vitamin D in unfortified milk. We report here an accurate quantitative analytical method for eight analogues of vitamin D: Vitamin D2 and D3 (D2 and D3), 25-hydroxy D2 and D3, 24,25-dihydroxy D2 and D3, and 1,25-dihydroxyD2 and D3. In this study, we compared saponification and protein precipitation for the extraction of vitamin D from milk and found the latter to be more effective. We also optimised the pre-column derivatisation using 4-phenyl-l,2,4-triazoline-3,5-dione (PTAD), to achieve the highest sensitivity and accuracy for all major vitamin D forms in milk. Chromatography was optimised to reduce matrix effects such as ion-suppression, and the matrix effects were eliminated using co-eluting stable isotope labelled internal standards for the calibration of each analogue. The analogues, 25-hydroxyD3 (25(OH)D3) and its epimer (3-epi-25(OH)D3) were chromatographically resolved, to prevent over-estimation of 25(OH)D3. The method was validated and subsequently applied for the measurement of total vitamin D levels in human, cow, mare, goat and sheep milk samples. The detection limits, repeatability standard deviations, and recovery ranges were from 0.2 to 0.4 femtomols, 6.30–13.5%, and 88.2–105%, respectively.  相似文献   

9.
《Analytical letters》2012,45(15):2925-2934
Abstract

A simple and sensitive RP‐HPLC method for the determination of parecoxib (PXB) in human plasma and pharmaceutical formulations has been developed and validated. The separation of PXB and the internal standard, ibuprofen (IBF) was achieved on a CLC C18 (5 μ, 25 cm×4.6 mm i.d.) column using UV detector at 200 nm. The mobile phase consisted of acetonitrile‐water (92:8 v/v). The linear range of detection was found to be 0.9–18.4 µg/ml (r=0.9985). Intra‐ and inter‐day assay relative standard deviations were observed to be less than 0.3%. The method has been applied successfully for the determination of PXB in spiked human plasma and pharmaceutical preparations. Analytical parameters were calculated and complete statistical evaluation is incorporated.  相似文献   

10.
Accurate, selective, sensitive and precise HPTLC‐densitometric and RP‐HPLC methods were developed and validated for determination of bumadizone calcium semi‐hydrate in the presence of its alkaline‐induced degradation product and in pharmaceutical formulation. Method A uses HPTLC‐densitometry, depending on separation and quantitation of bumadizone and its alkaline‐induced degradation product on TLC silica gel 60 F254 plates, using hexane–ethyl acetate–glacial acetic acid (8:2:0.2, v/v/v) as a mobile phase followed by densitometric measurement of the bands at 240 nm. Method B comprises RP‐HPLC separation of bumadizone and its alkaline‐induced degradation product using a mobile phase consisting of methanol–water–acetonitrile (20:30:50, v/v/v) on a Phenomenex C18 column at a flow‐rate of 2 mL/min and UV detection at 235 nm. The proposed methods were successfully applied to the analysis of bumadizone either in bulk powder or in pharmaceutical formulation without interference from other dosage form additives, and the results were statistically compared with the established method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A liquid chromatography/electrospray ionization–tandem mass spectrometry‐based method was developed for the identification of the conjugation positions of the monoglucuronides of 25‐hydroxyvitamin D3 [25(OH)D3] and 24,25‐dihydroxyvitamin D3 [24,25(OH)2D3] in human urine. The method employed derivatization with 4‐(4‐dimethylaminophenyl)‐1,2,4‐triazoline‐3,5‐dione to convert the glucuronides into fragmentable derivatives, which provided useful product ions for identifying the conjugation positions during the MS/MS. The derivatization also enhanced the assay sensitivity and specificity for urine sample analysis. The positional isomeric monoglucuronides, 25(OH)D3‐3‐ and ‐25‐glucuronides, or 24,25(OH)2D3‐3‐, ‐24‐ and ‐25‐glucuronides, were completely separated from each other under the optimized LC conditions. Using this method, the conjugation positions were successfully determined to be the C3 and C24 positions for the glucuronidated 25(OH)D3 and 24,25(OH)2D3, respectively. The 3‐glucuronide was not present for 24,25(OH)2D3, unlike 25(OH)D3, thus we found that selective glucuronidation occurs at the C24‐hydroxy group for 24,25(OH)2D3.  相似文献   

12.
A rapid and sensitive reversed‐phase high‐performance liquid chromatographic (RP‐HPLC) method was developed to investigate pharmacokinetics of columbianadin, one of the main bioactive constituents in the roots of Angelica pubescens f. biserrata, in rat plasma after intravenous administration to rats at two doses of 10 and 20 mg/kg. The method involves a plasma clean‐up step using liquid–liquid extraction by diethyl ether, followed by RP‐HPLC separation and detection. Separation of columbianadin was performed on an analytical Diamonsil? ODS C18 column, with a mobile phase of MeOH–H2O (85 : 15, v/v) at a flow‐rate of 1.0 mL/min, and UV detection was set at 325 nm. The retention time of columbianadin and scoparone (internal standard) was 6.7 and 3.5 min, respectively. The calibration curve was linear over the range of 0.2–20.0 μg/mL (r2 = 0.9986) in rat plasma. The lower limits of detection and quantification were 0.05 and 0.1 μg/mL, respectively. The extraction recovery from plasma was in the range of 81.61–89.93%. The intra‐ and inter‐day precisions (relative standard deviation) were between 1.01 and 9.33%, with accuracies ranging from 89.76 to 109.22%. The results indicated that the method established was suitable for the determination and pharmacokinetic study of columbianadin in rat plasma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The hydroxylation of vitamin D3 (VD3, cholecalciferol) side chains to give 25‐hydroxyvitamin D3 (25OHVD3) is a crucial reaction in the formation of the circulating and biologically active forms of VD3. It is usually catalyzed by cytochrome P450 monooxygenases that depend on complex electron donor systems. Cell‐free extracts and a purified Mo enzyme from a bacterium anaerobically grown with cholesterol were employed for the regioselective, ferricyanide‐dependent hydroxylation of VD3 and proVD3 (7‐dehydrocholesterol) into the corresponding tertiary alcohols with greater than 99 % yield. Hydroxylation of VD3 strictly depends on a cyclodextrin‐assisted isomerization of VD3 into preVD3, the actual enzymatic substrate. This facile and robust method developed for 25OHVD3 synthesis is a novel example for the concept of substrate‐engineered catalysis and offers an attractive alternative to chemical or O2 /electron‐donor‐dependent enzymatic procedures.  相似文献   

14.
The analysis of vitamin D status, with special emphasis on 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, is gaining interest in clinical studies due to the classical and non-classical effects attributed to this prohormone. In this research, the influence of the two steps preceding determination (viz. sample collection and preparation) on the quantitative analysis of vitamin D and its more important metabolites has been studied. Two preparation approaches, deproteination and solid-phase extraction (SPE), have been evaluated in terms of sensitivity to delimit their application, thus establishing that detection of 1,25-dihydroxyvitamin D cannot be addressed by protein precipitation. Concerning sample collection, serum and plasma reported high accuracy (above 83.3%) for vitamin D and metabolites, while precision, expressed as relative standard deviation, was below 12.9% for all analytes in both samples. Statistical analysis revealed that serum and plasma provided similar physiological levels for vitamin D3, 24,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3, while significantly different levels were obtained for 1,25-dihydroxyvitamin D3, always higher in plasma than in serum. Sample collection and treatment have proved to be significant in the analysis of vitamin D and its relevant metabolites.  相似文献   

15.
Abstract

A reversed phase high-performance liquid chromatographic method (HPLC) is described for separation and determination of colecalciferol (Vitamin D3) in Vitamin preparations and in biological materials. Vitamin D3 is extracted from the formulations and from the blood in a fully automated electronically controlled extraction apparatus. For HPLC a column of lichrosorb RP18 and methanol as eluent are used. The extraction, separation and determination of vitamin D3 needs about 10–20 minutes. The described extraction and HPLC methods allow the detection of 1–2 ng per injection and are well reproduced with a maximum coefficient of variation of < 3,5%. Vitamin A-acetate is used as internal standard.  相似文献   

16.
Tolnaftate, a thionoester anti‐fungal drug, was subjected to alkaline hydrolysis to produce methyl(m‐tolyl)carbamic acid and β ‐naphthol (tolnaftate impurity A). N‐Methyl‐m‐toluidine, tolnaftate impurity D, was synthesized and structurally elucidated along with tolnaftate alkaline degradation products using IR, H1NMR and MS. Two stability‐indicating HPTLC and RP‐HPLC methods were developed and validated, for the first time, for determination of tolnaftate, its alkaline degradation products and toxic impurities in the presence of methyl paraben, as a preservative in Tinea Cure® cream. The proposed HPTLC method depended on separation of the studied components on TLC silica gel F254 plates using hexane–glacial acetic acid (8:2, v/v) as a developing system and scanning wavelength of 230 nm. The proposed RP‐HPLC method was based on separation of the five components on an Eclipse plus C18 column. The mobile phase used was acetonitrile–water containing 1% ammonium formate (40:60, v/v), with a flow rate of 1 mL/min and detection wavelength of 230 nm. The proposed methods allowed the assay of tolnaftate toxic impurities, β ‐naphthol and N‐methyl‐m‐toluidine, down to 2%, allowing tracing of β ‐naphthol that could be absorbed by the skin causing systemic toxic effects, unlike tolnaftate, indicating the high significance of such determination. International Conference on Harmonization guidelines were followed for validation.  相似文献   

17.
A sensitive, specific and efficient high‐performance liquid chromatography/tandem mass spectrometry assay for the simultaneous determination of vinorelbine and its metabolite 4‐O‐deacetylvinorelbine in human and mouse plasma is presented. Heated electrospray ionization was applied followed by tandem mass spectrometry. A 50 µL plasma aliquot was protein precipitated with acetonitrile–methanol (1:1, v/v) containing the internal standard vinorelbine‐d3 and 20 µL volumes were injected onto the HPLC system. Separation was achieved on a 50 × 2.1 mm i.d. Xbridge C18 column using isocratic elution with 1 mm ammonium acetate–ammonia buffer pH 10.5–acetonitrile–methanol (28:12:60, v/v/v) at a flow rate of 0.4 mL/min. The HPLC run time was 5 min. The assay quantifies both vinorelbine and 4‐O‐deacetylvinorelbine from 0.1 to 100 ng/mL using sample volumes of only 50 µL. Mouse plasma samples can be quantified using calibration curves prepared in human plasma. Validation results demonstrate that vinorelbine and 4‐O‐deacetylvinorelbine can be accurately and precisely quantified in human and mouse plasma with the presented method. The assay is now in use to support (pre‐)clinical pharmacologic studies with vinorelbine in humans and mice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A simple and rapid RP‐HPLC‐DAD method was developed and validated for simultaneous determination of the dopamine antagonists haloperidol, its diazepane analog, and the dopamine agonist bromocriptine in rat plasma, to perform pharmacokinetic drug‐interaction studies. Samples were prepared for analysis by acetonitrile (22.0 μg/mL) plasma protein precipitation with droperidol as an internal standard, followed by a double‐step liquid‐liquid extraction with hexane : chloroform (70:30) prior to C‐18 separation. Isocratic elution was achieved using a 0.1% (v/v) trifluoroacetic acid in deionized water, methanol and acetonitrile (45/27.5/27.5, v/v/v). Triple‐wavelength diode‐array detection at the λmax of 245 nm for haloperidol, 254 nm for the diazepane analog and droperidol, and 240 nm for bromocriptine was carried out. The LLOQ of DAL, HAL, and BCT were 45.0, 56.1, and 150 ng/mL, respectively. In rats, the estimated pharmacokinetic parameters (i.e., t1/2, CL, and Vss) of HAL when administered with DAL and BCT were t1/2 = 16.4 min, Vss = 0.541 L/kg for HAL, t1/2 = 28.0 min, Vss = 2.00 L/kg for DAL, and t1/2 = 24.0 min, Vss = 0.106 L/kg for BCT. The PK parameters for HAL differed significantly from those previously reported, which may be an indication of a drug‐drug interaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
《Analytical letters》2012,45(12):2565-2573
Abstract

The electrochemical behaviour of vitamin D3 and 25-hydroxyvitamin D3 (25-OH D3) in a high performance liquid chromatography system using amperometric detection is described. Separation is carried out using a C18 reversed-phase column and the optimum mobile phase was a 0.1 M LiClO4 solution in methanol-water (97:3, v/v) at a flow rate of 1.25 ml/min. 25-OH D3 and vitamin D3 were eluted with good resolution at retention times of 3 and 6 minutes respectively, and determined by amperometric detection with a glassy carbon electrode at + 1.050 V (vs Ag/AgCl). Calibration graphs for both substances showed good linearity when amounts of vitamin D3 between 18 and 312 ng and 27 and 412 ng of 25-OH D3 were injected. Detection limits of 8 ng (vitamin D3) and 25 ng (25-OH D3); relative standard deviations of 3.2% (vitamin D3) and 5.8% (25-OH D3) were obtained.  相似文献   

20.
The biotransformation of nodakenetin (NANI) by rat liver microsomes in vitro was investigated. Two major polar metabolites were produced by liver microsomes from phenobarbital‐pretreated rats and detected by reversed‐phase high‐performance liquid chromatography (RP‐HPLC) analysis. The chemical structures of two metabolites were firmly identified as 3′(R)‐hydroxy‐nodakenetin‐3′‐ol and 3′(S)‐hydroxy‐nodakenetin‐3′‐ol, respectively, on the basis of their 1H‐NMR, MS and optical rotation analysis. The latter was a new compound. A sensitive, selective and simple RP‐HPLC method has been developed for the simultaneous determination of NANI and its two major metabolites in rat liver microsomes. Chromatographic conditions comprise a C18 column, a mobile phase with MeOH‐H2O (40 : 60, v/v), a total run time of 40 min, and ultraviolet absorbance detection at 330 nm. In the rat heat‐inactivated liver microsomal supernatant, the lower limits of detection and quantification of metabolite I, metabolite II and NANI were 5.0, 2.0, 10.0 ng/mL and 20.0, 5.0, 50.0 ng/mL, respectively, and their calibration curves were linear over the concentration range 50–400, 20–120 and 150–24000 ng/mL, respectively. The results provided a firm basis for further evaluating the pharmacokinetics and clinical efficacy of NANI. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号