首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lee TM  Cai H  Hsing IM 《The Analyst》2005,130(3):364-369
In this paper we report the catalytic effects of various gold nanoparticles for silver electrodeposition on indium tin oxide (ITO)-based electrodes, and successfully apply this methodology for signal amplification of the hybridization assay. The most widely used gold nanoparticle-based hybridization indicators all promote silver electrodeposition on the bare ITO electrodes, with decreasing catalytic capability in order of 10 nm gold, DNA probe-10 nm gold conjugate, streptavidin-5 nm gold, and streptavidin-10 nm gold. Of greater importance, these electrocatalytic characteristics are affected by any surface modifications of the electrode surfaces. This is illustrated by coating the ITO with an electroconducting polymer, poly(2-aminobenzoic acid)(PABA), as well as avidin molecules, which are promising immobilization platforms for DNA biosensors. The catalytic silver electrodeposition of the gold nanoparticles on the PABA-coated ITO surfaces resembles that on the bare surfaces. With avidin covalently bound to the PABA, it is interesting to note that the changes in electrocatalytic performance vary for different types of gold nanoparticles. For the streptavidin-5 nm gold, the silver electrodeposition profile is unaffected by the presence of the avidin layer, whereas for both the 10 nm Au and DNA probe-10 nm gold conjugate, the deposition profiles are suppressed. The streptavidin-5 nm gold is employed as the hybridization indicator, with avidin-modified (via PABA) ITO electrode as the immobilization platform, to enable signal amplification by the silver electrodeposition process. Under the conditions, this detection strategy offers a signal-to-noise ratio of 20. We believe that this protocol has great potential for simple, reproducible, highly selective and sensitive DNA detection on fully integrated microdevices in clinical diagnostics and environmental monitoring applications.  相似文献   

2.
After showing the failure of conventional gold-enhancement procedures to amplify the gold nanoparticle-based electrochemical transduction of DNA hybridization in polystyrene microwells, a new efficient protocol was developed and evaluated for the sensitive quantification of a 35 base-pair human cytomegalovirus nucleic acid target (tDNA). In this assay, the hybridization of the target adsorbed on the bottom of microwells with an oligonucleotide-modified Au nanoparticle detection probe (pDNA-Au) was monitored by the anodic stripping detection of the chemically oxidized gold label at a screen-printed microband electrode (SPMBE). Thanks to the combination of the sensitive Au(III) determination at a SPMBE with the large amount of Au(III) released from each pDNA-Au, picomolar detection limits of tDNA can be achieved. Further enhancement of the hybridization signal based on the autocatalytic reductive deposition of ionic gold (Au(III)) on the surface of the gold nanoparticle labels anchored on the hybrids was first envisaged by incubating the commonly used mixture of Au(III) and hydroxylamine (NH(2)OH). However, due to a considerable nonspecific current response of poor reproducibility it was not possible to significantly improve the analytical performances of the method under these conditions. Complementary transmission electronic microscopy experiments indicated the loss of most of the grown gold labels during the post-enlargement rinsing step. To circumvent this drawback, a polymeric solute containing polyethyleneglycol and sodium chloride was introduced in the growth media to act as an aggregating agent during the catalytic process and thus retain the enlarged labels on the bottom of the microwell. This strategy, which led to an efficient increase of the hybridization response, allowed detection of tDNA concentrations as low as 600 aM (i.e., 10(4) lower than without amplification), and thus offers great promise for ultrasensitive detection of other hybridization events.  相似文献   

3.
Gold nanostructures are the most commonly used nanostructures for fabricating electrochemical sensors and biosensors. In this study, we compared the catalytic performances of three types of gold nanoseed particles having two different morphologies, upon attachment to an amino‐functionalized ITO electrode surface. The ITO electrode surface was modified with 3‐aminopropyltrimethoxysilane (APTMS) and (1) gold nanoseed spheres (AuNSS), prepared using the ion capture and successive reduction method (ICR), (2) commercially available 5 nm AuNSS, and (3) a newly synthesized gold nanoseed wire (AuNSW). The electrocatalytic properties of the three electrodes were evaluated. Among the three electrodes, the AuNSW/APTMS/ITO was found to be the electrode of choice and exhibited excellent electrocatalytic properties toward the biologically important analytes glucose, uric acid, and serotonin.  相似文献   

4.
We have developed a nucleic acid (NA) sensor based on mediated electrochemical oxidation of guanine residues. In this method, oligonucleotide probes are bound to a tin-doped indium oxide (ITO) electrode through a self-assembled phosphonate monolayer. The end carboxyl moiety of the monolayer is activated with carbodiimide and reacted with the amine group of a C6 alkyl linker which has been added to the 5'-end of the oligonucleotide probe. Upon hybridization of the complementary target NA, the hybrid is detected using a redox-active mediator, tris(2,2'-bipyridyl) ruthenium(II). We speculate that the monolayer does not impede electron-transfer since it contains many defect sites when assembled on a polycrystalline ITO surface. These defect sites are accessible to the mediator, but not to NA or proteins. The electrocatalytic current was a linear function of the amount of guanine bound at the electrode surface, with a detection limit of 120 amoles of guanine cm(-2) at 0.28 cm(2) ITO electrodes.  相似文献   

5.
This work describes an improved seed-mediated growth approach for the direct attachment and growth of mono-dispersed gold nanoparticles on nanostructured indium tin oxide (ITO) surfaces. It was demonstrated that, when the seeding procedure of our previously reported seed-mediated growth process on an ITO surface was modified, the density of gold nanospheres directly grown on the surface could be highly improved, while the emergence of nanorods was restrained. By field emission scanning electron microscopy (FE-SEM) and cyclic voltammetry, the growth of gold nanoparticles with increasing growth time on the defect sites of nanostructured ITO surface was monitored. Using a [Fe(CN)6]3−/[Fe(CN)6]4− redox probe, the increasingly facile heterogeneous electron transfer kinetics resulting from the deposition and growth of gold nanoparticle arrays was observed. The as-prepared gold nanoparticle arrays exhibited high catalytic activity toward the electrooxidation of nitric oxide, which could provide electroanalytical application for nitric oxide sensing.  相似文献   

6.
Nanometer sized materials have been shown to possess excellent chemical and electrochemical catalytic properties. In this work, a gold nanoparticle (AuNP) modified indium tin oxide (ITO) electrode was employed for investigating its electro-catalytic property. AuNP was deposited on the 3-aminopropyltriethoxysilane (APTES) modified ITO electrode by self-assembly, and was characterized by scanning electron microscopy and cyclic voltammetry. Although the electrochemical reaction of dopamine was very sluggish on the ITO/APTES electrode, it was significantly enhanced after AuNP deposition. The cyclic voltammogram exhibited apparent dependence on the surface coverage of 11 nm AuNPs, which could be rationalized by different modes of mass diffusion. Among the different sizes of AuNP investigated, the lowest anodic peak potential was observed on 11 nm AuNP. However, the potential was still about 50 mV more positive than that obtained on a bulk gold electrode of similar geometry. It is therefore concluded that there is no nanometer size effect of AuNP modified ITO on the electrochemistry of dopamine.  相似文献   

7.
Dai X  Wildgoose GG  Compton RG 《The Analyst》2006,131(11):1241-1247
In this report gold, silver and palladium metal nanoparticles are separately supported on glassy carbon microspheres (GCM) using bulk electroless deposition techniques to produce three different materials labelled as GCM-Au, GCM-Ag and GCM-Pd respectively. These three materials are then combined together into a composite film on a glassy carbon (GC) electrode surface using multiwalled carbon nanotubes (MWCNTs). The MWCNTs serve to not only mechanically support this composite film as a "binder" but they also help to "wire up" each modified GCM to the underlying substrate. The intelligently designed structure of this electrode interface allows this single modified electrode to simultaneously behave as if it were a macrodisc electrode constructed of gold, silver or palladium, whilst using only a fraction of the equivalent amount of these precious metals. Furthermore this unique structure allows the possibility of combinatorial electrochemistry to be realised using a relatively facile electrode construction which avoids the problems of alloy formation, co-deposition and the formation of bimetallic species. For instance a mixture of several different analytes, which can each only be detected on a different specific substrate, can simultaneously be determined using one electrode in a single voltammetric experiment! Alternatively a substrate could undergo electrocatalytic reactions on one substrate, whilst the products, and hence the progress of this reaction, can be studied at a different substrate simultaneously at the same electrode surface. Proof-of-concept examples are presented herein and the designer electrode interface is shown to produce analytical responses to model target analytes such as hydrazine, bromide and thallium(I) ions that are comparable, if not better, than those obtained at metal macrodisc electrodes and even at other state-of-the-art nanoparticle modified electrodes.  相似文献   

8.
《Electroanalysis》2004,16(19):1561-1568
A new methodology, based on silver electrocatalytic deposition and designed to quantify gold deposited onto carbon paste electrode (CPE) and glassy carbon electrode (GCE), has been developed in this work. Silver (prepared in 1.0 M NH3) electrodeposition at ?0.13 V occurs only when gold is previously deposited at an adequate potential on the electrode surface for a fixed period of time. When a CPE is used as working electrode, an adequate oxidation of gold is necessary. This oxidation is carried out in both 0.1 M NaOH and 0.1 M H2SO4 at oxidation potentials. When a GCE is used as working electrode, the oxidation steps are not necessary. Moreover, a cleaning step in KCN, which removes gold from electrode surface, is included. To obtain reproducibility in the analytical signal, the surface of the electrodes must be suitably pretreated; this electrodic pretreatment depends on the kind of electrode used as working electrode. Low detection limits (5.0×10?10 M) for short gold deposition times (10 min for CPE and 5 min for GCE) were achieved with this novel methodology. Finally, sodium aurothiomalate can be quantified using silver electrocatalytic deposition and GCE as working electrode. Good linear relationship between silver anodic stripping peak and aurothiomalate concentration was found from 5.0×10?10 M to 1.0×10?8 M.  相似文献   

9.
《Electroanalysis》2017,29(4):1166-1171
We present an electrochemical biosensor for the analysis of nucleic acids upon hybridization on the β‐cyclodextrin (β‐CD)‐modified gold electrode. The strategy is based on the following: The 5’‐ferrocene‐labeled single stranded capture probe DNA (5’‐fc‐ss‐DNA) was incorporated into the cavity of thiolated β‐CD which was immobilized on the surface of gold electrode. After hybridization of complementary target DNA, hybridized double stranded DNA (ds‐DNA) was released from the cavity of β‐CD. The difference of electrochemical properties on the modified gold electrode was characterized by cyclic voltametry and surface plasmon resonance. We successfully applied this method to the investigation of the sensor responses due to hybridization on various concentrations of applied target DNA. As a result, the label‐free electrochemical DNA sensor can detect the target DNA with a detection limit of 1.08 nM. Finally, our method does not require either hybridization indicators or other signalling molecules such as DNA intercalaters which most of electrochemical hybridization detection systems require.  相似文献   

10.
In this work, we present a novel process for fabrication of a silver‐nanoparticle‐modified electrode using silver ion implantation. This method is facile, low‐cost and environmental friendly without the use of any other chemicals. The obtained AgNPs on the electrode surface, which were free from any reagents surrounding or binding to them, showed prominent electrocatalytic activity towards the oxidation of glucose, leading to a nonenzymatic glucose sensor with a wide linear range and a detection limit of 0.5 µM. In addition, the modified electrode also exhibited acceptable reproducibility and long‐term stability.  相似文献   

11.
A single‐wall carbon nanotube functionalized by carboxylic groups (SWNT‐CA) was found to be adsorbed on an indium tin oxide (ITO) electrode by chemical interaction between carboxylic groups and the ITO surface. The adsorption experiments indicated that the narrow pH conditions (around pH 3.0) exist for its adsorption which is restricted by preparation of stable fluid dispersion (favorable at higher pH) and by the chemical interaction (favorable at lower pH). Atomic force microscopic (AFM) measurements suggest that fragmented SWNT‐CA are adsorbed, primarily lying on the surface. Electrochemical impedance analysis indicated that an electrochemical double layer capacitance of the SWNT‐CA/ITO electrode is considerably higher than that for the ITO electrode, suggesting that the interfacial area between the electrode surface and the electrolyte solution is enlarged by the SWNT‐CA layer. Pt particles were deposited as a catalyst on the bare ITO and SWNT‐CA‐coated ITO (SWNT‐CA/ITO) electrodes to give respective Pt‐modified electrodes (denoted as a Pt/ITO electrode and a Pt/SWNT‐CA/ITO electrode, respectively). The cathodic current for the Pt/SWNT‐CA/ITO electrode was 1.7 times higher than that for the Pt/ITO electrode at 0.0 V, showing that the Pt/SWNT‐CA/ITO electrode works more efficiently for O2 reduction at 0.0 V due to the SWNT‐CA layer. The enhancement by the SWNT‐CA layer is also effective for electrocatalytic proton reduction. It could be ascribable to the enlarged interfacial area between the electrode surface and the electrolyte solution.  相似文献   

12.
A new strategy for homogeneous detection of DNA hybridization in single-step format was developed based on fluorescence quenching by gold nanoparticles. The gold nanoparticle is functionalized with 5’-thiolated 48-base oligonucleotide (probe sequence), whose 3’-terminus is labeled with fluorescein (FAM), a negatively charged fluorescence dye. The oligonucleotide adopts an extended configuration due to the electrostatic repulsion between negatively charged gold nanoparticle and the FAM-attached probe sequence. After addition of the complementary target sequence, specific DNA hybridization induces a conformation change of the probe from an extended structure to an arch-like configuration, which brings the fluorophore and the gold nanoparticle in close proximity. The fluorescence is efficiently quenched by gold nanoparticles. The fluorescence quenching efficiency is related to the target concentration, which allows the quantitative detection for target sequence in a sample. A linear detection range from 1.6 to 209.4 nmol/L was obtained under the optimized experimental conditions with a detection limit of 0.1 nmol/L. In the assay system, the gold nanoparticles act as both nanoscaffolds and nanoquenchers. Furthermore, the proposed strategy, in which only two DNA sequences are involved, is not only different from the traditional molecular beacons or reverse molecular beacons but also different from the commonly used sandwich hybridization methods. In addition, the DNA hybridization detection was achieved in homogenous solution in a single-step format, which allows real-time detection and quantification with other advantages such as easy operation and elimination of washing steps.  相似文献   

13.
This paper reports about the influence of temperature, hybridization time and convection upon the detection of osmium tetroxide bipyridine‐labeled target oligonucleotides at rotating gold disk (RDE) and heated low temperature co‐fired ceramics (LTCC) gold disk electrodes. We used mixed self‐assembled monolayers of hexathiol‐linked probe oligonucleotides and mercaptohexanol on the gold surface of the electrodes for the hybridization detection of the labeled targets by means of square‐wave voltammetry. Due to protective strands, the osmium tetroxide‐modified target strands were still able to hybridize with the immobilized probe strands. The hybridization of such osmium tetroxide bipyridine‐modified target strands with thiol‐linked probe strands immobilized on gold yielded large reversible square‐wave‐voltammetric signals. Rotation speed and, hence, mass transport due to convection has only marginal effects. On the other hand, temperature affects greatly the hybridization step as indicated by both heated LTCC electrode in cold and RDE in warm hybridization solution. Calculated detection limits of 3.6 and 3.1 nM targets at the RDE and the LTCC electrode, respectively, have been almost the same at both types of electrodes. Applying an appropriate temperature during hybridization is more important than mechanically enhanced mass transport.  相似文献   

14.
Principles and practical application of combinatorial electrochemistry in search for new electroactive materials in electroanalysis have been explored. Nanoparticles of three different metals: silver, gold and palladium have been independently synthesized on the glassy carbon spherical powder surface by electroless deposition process and characterized using both spectroscopic and electrochemical techniques. These three materials were then combined together onto basal plane pyrolytic graphite electrode surface and the application of the combinatorial approach to find the electrode material for bromide detection as model target analyte was demonstrated. The component electroactive for bromide detection was next identified and it was found that silver nanoparticles were the active ones. A composite electrode based on silver nanoparticle modified glassy carbon powder and epoxy resin was then fabricated and it was found to allow accurate determination of bromide. The electroactivity for the bromide determination of the composite electrode was compared with that of a bulk silver electrode and it was shown that the composite electrode is very efficient with a comparable electroactivity with only a portion of precious metals being used for its construction.  相似文献   

15.
Electrogenerated chemiluminescence (ECL) for DNA hybridization detection is demonstrated based on DNA that was self-assembled onto a bare gold electrode and onto a gold nanoparticles modified gold electrode. A ruthenium complex served as an ECL tag. Gold nanoparticles were self-assembled on a gold electrode associated with a 1,6-hexanedithiol monolayer. The surface density of single stranded DNA (ssDNA) on the gold nanoparticle modified gold electrode was 4.8?×?1014 molecules per square centimeter which was 12-fold higher than that on the bare gold electrode. Hybridization was induced by exposure of the target ssDNA gold electrode to the solution of ECL probe consisting of complementary ssDNA tagged with ruthenium complex. The detection limit of target ssDNA on a gold nanoparticle modified gold electrode (6.7?×?10?12 mol L?1) is much lower than that on a bare gold electrode (1.2?×?10?10 mol L?1). The method has been applied to the detection of the DNA sequence related to cystic fibrosis. This work demonstrates that employment of gold nanoparticles self-assembled on a gold electrode is a promising strategy for the enhancement of the sensitivity of ECL detection of DNA.  相似文献   

16.
The immobilisation of nanoparticles from solution at a solid surface followed by anodic stripping voltammetry is a simple technique allowing the analysis of nanoparticle concentrations and identity. We report that the modification of gold electrodes with meso‐2,3‐dimercaptosuccinic acid (DMSA) shows a useful increase in the adsorption rate of silver nanoparticles on a gold substrate showing that the chemical modification of the electrode is analytically advantageous.  相似文献   

17.
The aim of this work is the preparation of DNA‐sensing architectures based on gold nanoparticles (AuNPs) in conjunction with an enzyme‐amplified detection to improve the analytical properties of genosensor. In order to assess the utility of study as DNA‐sensing devices, a thiolated DNA capture probe sequence was immobilized on the gold nanoparticle modified surface. After labeling of the biotinylated hybrid with a streptavidin‐alkaline phosphatase conjugate, the electrochemical detection of the enzymatic product was performed on the surface of a disposable electrode. Two different enzymatic substrates to detect the hybridization event were studied. In the first case, the enzyme catalyzed the hydrolysis of α‐naphthyl phosphate; the product is electroactive and has been detected by means of differential pulse voltammetry (DPV). In the second one, the enzyme catalyzed the precipitation of an insoluble and insulating product on the sensing interface. In this case, the electrochemical transduction of the hybridization process was performed by electrochemical impedance spectroscopy (EIS).  相似文献   

18.
Development of electrochemical DNA hybridization biosensors based on carbon paste electrode (CPE) and gold nanoparticle modified carbon paste electrode (NGMCPE) as transducers and ethyl green (EG) as a new electroactive label is described. Electrochemical impedance spectroscopy and cyclic voltammetry techniques were applied for the investigation and comparison of bare CPE and NGMCPE surfaces. Our voltammetric and spectroscopic studies showed gold nanoparticles are enable to facilitate electron transfer between the accumulated label on DNA probe modified electrode and electrode surface and enhance the electrical signals and lead to an improved detection limit. The immobilization of a 15‐mer single strand oligonucleotide probe on the working electrodes and hybridization event between the probe and its complementary sequence as a target were investigated by differential pulse voltammetry (DPV) responses of the EG accumulated on the electrodes. The effects of some experimental variables on the performance of the biosensors were investigated and optimum conditions were suggested. The selectivity of the biosensors was studied using some non‐complementary oligonucleotides. Finally the detection limits were calculated as 1.35×10?10 mol/L and 5.16×10?11 mol/L on the CPE and NEGCPE, respectively. In addition, the biosensors exhibited a good selectivity, reproducibility and stability for the determination of DNA sequences.  相似文献   

19.
We herein constructed a sensor that converts target DNA hybridization‐induced conformational transformation of the probe DNA to electrochemical response based on host‐guest recognition and nanoparticle label. In the sensor, the hairpin DNA terminal‐labeled with 4‐((4‐(dimethylamino)phenyl)azo)benzoic acid (dabcyl) and thiol group was immobilized on Au electrode surface as the probe DNA by Au‐S bond, and the CdS nanoparticles surface‐modified with β‐cyclodextrins (CdS‐CDs) were employed as electrochemical signal provider and host‐guest recognition element. Initially, the probe DNA immobilized on electrode kept the stem‐loop configuration, which shielded dabcyl from docking with the CdS‐CDs in solution due to the steric effect. After target hybridization, the probe DNA underwent a significant conformational change, which forced dabcyl away from the electrode. As a result, formerly‐shielded dabcyl became accessible to host‐guest recognition between β‐cyclodextrin (β‐CD) and dabcyl, thus the target hybridization event could be sensitively transduced to electrochemical signal provided by CdS‐CDs. This host‐guest recognition‐based electrochemical sensor has been able to detect as low as picomolar DNA target with excellent differentiation ability for even single mismatch.  相似文献   

20.
We report a versatile platform for highly sensitive alkaline phosphatase (ALP)‐based electrochemical biosensors that uses an avidin‐modified indium tin oxide (ITO) electrode as a sensing electrode and 1‐naphthyl phosphate (NPP) as an ALP substrate. Almost no electrocatalytic activity of NPP and good electrocatalytic activity of 1‐naphthol (ALP product) on the ITO electrodes allow a high signal‐to‐background ratio. The effective surface covering of avidin on the ITO electrodes allows very low levels of nonspecific binding of proteins to the sensing electrodes. The platform technology is used to detect mouse IgG with a detection limit of 1.0 pg/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号