首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
Multifunctional devices integrated with electrochromism and energy storage or energy production functions are attractive because these devices can be used as an effective approach to address the energy crisis and environmental pollution in society today. In this review, we explain the operation principles of electrochromic energy storage devices including electrochromic supercapacitors, electrochromic batteries, and the photoelectrochromic devices. Furthermore, the material candidates and structure types of these multifunctional devices are discussed in detail. The major challenges of these devices along with a further outlook are highlighted at the end.  相似文献   

2.
The demands for new configurations of electrochemical cells continue to grow and novel approaches are being enabled by the advent of new electromaterials and novel fabrication strategies. Wearable energy storage devices that can be seamlessly integrated into garments are a critical component of the wearable electronics genre. Recently, flexible yarn supercapacitors have attracted significant attention due to their ability to be integrated into fabrics, or stitched into existing textiles. Large-scale production of yarn supercapacitors using conventional manufacturing processes, however, is still a challenge. Here, we introduce the use of braiding technology to achieve a predetermined arrangement of fibre electrodes, the basis of a mass fabrication protocol to produce specific electrochemical cells: wearable supercapacitors. The resultant supercapacitors show a high capacitance of 1.71 mF cm 1. The structure is highly flexible with a 25% capacitance loss recorded after 1000 bending cycles.  相似文献   

3.
Additive manufacturing and 3D printing in particular have the potential to revolutionize existing fabrication processes, where objects with complex structures and shapes can be built with multifunctional material systems. For electrochemical energy storage devices such as batteries and supercapacitors, 3D printing methods allows alternative form factors to be conceived based on the end use application need in mind at the design stage. Additively manufactured energy storage devices require active materials and composites that are printable, and this is influenced by performance requirements and the basic electrochemistry. The interplay between electrochemical response, stability, material type, object complexity and end use application are key to realising 3D printing for electrochemical energy storage. Here, we summarise recent advances and highlight the important role of methods, designs and material selection for energy storage devices made by 3D printing, which is general to the majority of methods in use currently.  相似文献   

4.
钙钛矿材料优异的光电性能使其在高集成、 高性能、 多功能光电探测领域具有广泛的应用前景. 近年来, 科研人员致力于钙钛矿阵列化探测器的研究, 并取得了一系列重要的成果. 本文重点评述了钙钛矿材料的阵列化及其多功能探测器的制备和应用, 介绍了钙钛矿材料的结构分类、 阵列化集成方法及光电探测器的基本器件类型和性能指标, 并进一步阐述了基于钙钛矿一维阵列的高性能光电探测器及其多功能探测器的相关应用研究进展. 最后, 对该研究领域未来的发展方向进行了总结和展望.  相似文献   

5.
In this Letter, we have fabricated a multifunctional device for highly efficient and inexpensive oil spill cleanup by combining electroless metal deposition with self-assembled monolayers, which has integrated the functions of oil containment booms, oil-sorption materials, oil skimmers, and water-oil separating devices. This functionally integrated device has a lower density than that of water, which leads to a potential application as oil containment booms; it can take up oil that is 3.5 times its own weight, which shows excellent oil-sorption properties, with the water-oil separating yield of the as-prepared device being up to 92%. The device has the advantages of high efficiency, capacity of antiwave, and reproducibility, which is suitable for many types of organic solvents or oils, even for emulsion of petroleum and water, and thus is a proof-of-principle idea to be applied in marine spilt oil cleanup and other water-oil separating systems.  相似文献   

6.
石墨烯薄膜是一种以石墨烯纳米片为基元结构的宏观体,通过合理的结构设计和表面修饰使其具有优异的电学、力学和热学性能,将在电化学储能、电子器件、健康和环保等领域具有潜在的应用。本文主要综述了从石墨烯基元调控到二维宏观膜组装以及石墨烯薄膜在超级电容器应用中的研究进展。主要介绍了石墨烯薄膜的简易制备方法,并详细介绍了通过对石墨烯基元的结构调控和表面修饰来优化石墨烯薄膜电化学性能的两大策略,最后对石墨烯薄膜应用所面临的挑战和未来的发展进行了总结与展望。  相似文献   

7.
电化学电容器(超级电容器)是一种兼具高能量密度和高功率密度的新型储能元件,它既具有传统电容器大电流快速充放电的特性,又具有蓄电池高储能密度的特性. 近几年,电化学电容器储能机理的研究和纳米结构电极复合材料的合成不断取得新突破,超级电容器的电化学性能得到了显著的提高. 为了更好地解析电化学电容器的工作特性,建立描述电容器内部浓度分布和电场的物理模型是一项非常重要的研究方法. 本文首先介绍电化学电容器理论基础,并论述近几年电化学电容器连续模型研究进展,最后阐述连续模型进一步发展的前景和挑战.  相似文献   

8.
Exploration of cost‐effective, high‐performance and durable multifunctional electrocatalysts is of significant importance for renewable energy conversion and storage. In this work, a simple strategy is developed to tailor the nickel metal with the collaboration of nitrogen‐doped graphene and single‐walled carbon nanotubes. The resulted nickel catalyst exhibits superior trifunctional activities for oxygen evolution, hydrogen evolution and oxygen reduction reactions in the same electrolyte, even comparable to commercial Pt/C and RuO2 respectively, which can be attributed to the synergistic advantages between nickel, nitrogen and carbon, mainly including abundant integrated active sites achieved by the irregular charge distribution among C?N and Ni?N coupling centers. Such remarkable effects on trifunctional catalysis elicit the efficient overall water splitting, and endow the assembled zinc‐air battery with a good performance. These highlight the metallic nickel as an advanced multifunctional electrocatalysts with integrated sites developed from the collaboration of two different carbon nanomaterials.  相似文献   

9.
Ionic liquids are a class of solvents widely studied in the literature for various applications. As a subclass of ionic liquids, redox ionic liquids can endow charge exchange properties (electrons transfer) to these electrolytes for electrochemical energy storage. In this review article, we propose to study this family of ionic liquids and suggest a chronological classification. We introduce five generations of redox ionic liquids with different basic compounds such as polyethylene glycol, ferrocene, different linker lengths, TFSI anion, and biredox ionic liquids. The versatility of the redox ionic liquids synthesis will be discussed as well as the fundamental and applied aspects of their use as electrolytes, which have high charge densities. The impact of the redox ionic liquids on the electrochemical mechanisms will be described. We also present how the redox shuttle effect, detrimental to supercapacitors, can be prevented while it can be used to improve lithium-ion batteries.  相似文献   

10.
《中国化学快报》2020,31(9):2309-2313
Conductive MOFs could exhibit full potential as integrated electrode materials for supercapacitors without interference from additional conductive additives. Here we report an anionic Co-MOF cage with zeolite framework, which was balanced by the redox-active guest [Co(H2O)6]2+ and protonated [(CH3)2NH2]2+ ions. Benefit from the unique ion skeleton structure, Co-MOF exhibits a conductivity higher than most of reported MOFs with the value of 1.42 × 10-3 S/cm, which can be directly fabricated as electrode for supercapacitors. A maximum specific capacitance of 236.2 F/g can be achieved at a current density of 1 A/g of Co-MOF. Additionally, the electric performance and morphology of this Co-MOF can be modified by cetyltrimethylammonium bromide (CTAB) and the maximum specific capacitance could increase up to 334 F/g at 1 A/g when the ratio of ligand and CTAB is 1:6 (Co-MOF-6). Furthermore, the specific capacitance can retain at 64.04% and 77.92% of the initial value after 3000 cycles of Co-MOF and Co-CTAB-6, respectively. Obviously, the addition of CTAB further improves both capacitance and cycle stability.  相似文献   

11.
Fiber-shaped supercapacitors(FSSCs) show great potential in portable and wearable electronics due to their unique advantages of high safety, environmental friendliness, high performances, outstanding flexibility and integrability. They can directly act as the power sources or be easily integrated with other flexible devices to constitute self-powered and sustainable energy suppliers, providing excellent adaptability to irregular surfaces. This review mainly summarizes the recently reported works of FSSCs including preparation methods of various fiber electrodes,construction strategies of FSSCs and multi-functional device integrations, exploration of reaction mechanisms and strategies to improve the electrochemical performance and provision of suggestions on further designing and optimization of FSSCs. Meanwhile, it shares our perspectives on challenges and opportunities in this field, shedding light on the development of high-performance fiber-shaped supercapacitors with multifunctions.  相似文献   

12.
高比能超级电容器的研究进展   总被引:1,自引:0,他引:1  
与传统蓄电池相比,超级电容器具有高功率密度、长循环寿命和使用温度范围宽等优势,但其能量密度较低.本文对超级电容器的结构、分类以及发展状况进行了简要介绍,重点阐述了本实验室近年来在研制高性能超级电容器方面的相关工作.主要从两个方面来提高超级电容器的能量密度:(1)通过采用中性水系电解液、有机电解液和离子液体提高对称型碳基超级电容器的电压窗口;(2)应用非对称型超级电容器,即一个电极采用具有法拉第赝电容电极材料或电池电极材料,而另一个电极则采用具有双电层电容的电极材料.同时介绍了由锂离子电池电极材料/活性炭作为正极,石墨作为负极组成的锂离子混合型超级电容器.最后,对超级电容器的发展方向进行了展望.  相似文献   

13.
《中国化学快报》2023,34(10):108187
Lignin and its derivatives hold great potential in developing high performance porous carbon materials for supercapacitors due to the versatile features of high carbon content, abundant multifunctional groups, low cost, and environmental benefits. Unfortunately, their derived porous carbon generally has the features of unfavorable microporous-dominated morphologies and low specific surface area (SSA) attributed from the highly-branched structure of lignin, which are hardly suitable for the supercapacitors with ionic liquid (IL) electrolyte, leading to poor energy density and rate capability. Herein, porous carbon materials with desirable mesoporous contributions from sodium lignosulphonate are designed via a facile template method. Such rich mesoporisity carbon materials not only possess with three-dimensional interconnected network, large SSA, as well as favorable pore size distribution for accelerated ion and electron mass transfer, but also feature low heteroatom content for high electrochemical stability. Consequently, the optimal electrode exhibits a high capacitance of 166 F/g at 0.5 A/g, superior rate performance (59 Wh/kg at 59 kW/kg), as well as impressive cycle life with good capacitance retention of 93.1% in EMIBF4 electrolytes. The present work opens a new avenue to design porous carbon materials with high mesopore properties from lignin for effective compatibility with IL electrolyte in high-performance supercapacitors.  相似文献   

14.
Molecular/supramolecular springs are artificial nanoscale objects possessing well‐defined structures and tunable physicochemical properties. Like a macroscopic spring, supramolecular springs are capable of switching their nanoscale conformation as a response to external stimuli by undergoing mechanical spring‐like motions. This dynamic action offers intriguing opportunities for engineering molecular nanomachines by translating the stimuli‐responsive nanoscopic motions into macroscopic work. These nanoscopic objects are reversible dynamic multifunctional architectures which can express a variety of novel properties and behave as adaptive nanoscopic systems. In this Minireview, we focus on the design and structure–property relationships of supramolecular springs and their (self‐)assembly as a prerequisite towards the generation of novel dynamic materials featuring controlled movements to be readily integrated into macroscopic devices for applications in sensing, robotics, and the internet of things.  相似文献   

15.
There are many reports on long persistent phosphors (LPPs) applied in bioimaging. However, there are few reports on LPPs applied in photothermal therapy (PTT), and an integrated system with multiple functions of diagnosis and therapy. In this work, we fabricate effective multifunctional phosphors Zn3Ga2SnO8: Cr3+, Nd3+, Gd3+ with NIR persistent phosphorescence, photothermal response and magnetism. Such featured materials can act as NIR optical biolabels and magnetic resonance imaging (MRI) contrast agents for tracking the early cancer cells, but also as photothermal therapeutic agent for killing the cancer cells. This new multifunctional biomaterial is expected to open a new possibility of setting up an advanced imaging‐guided therapy system featuring a high resolution for bioimaging and low side effects for the photothermal ablation of tumors.  相似文献   

16.
自噬是真核细胞降解蛋白质的重要途径之一, 在细胞的更新代谢中起重要作用. 肿瘤细胞借助高水平的细胞自噬能够阻断细胞凋亡途径, 降低化疗药物的抗肿瘤效果. 本文通过设计编码有核酸适配体序列(Aptamer)和DNA酶序列(DNAzyme)的多功能DNA纳米花, 利用DNA序列可负载化疗药物阿霉素(Dox)的特性, 实现了对肿瘤细胞特异靶向的药物递送, 并高效沉默肿瘤细胞的自噬相关基因ATG5, 达到增敏抗肿瘤化疗的效果. 通过RT-PCR实验验证合成的DNA纳米花可以有效剪切肿瘤细胞中自噬相关基因ATG5的mRNA; 并通过DNA纳米花的细胞毒性和细胞凋亡实验研究了其对肿瘤细胞系MCF-7的靶向治疗作用, 结果显示该多功能DNA纳米花在增敏抗肿瘤化疗方面具有明显优势.  相似文献   

17.
Hybrid organic–inorganic materials based on conjugated polymers constitute state-of-the-art compounds with recognized technological implications. In the area of energy conversion, production and storage devices, these materials have been applied as electrodes for batteries, supercapacitors, fuel cells or solar cells, among others. Their importance relies on the wide variety of organic and inorganic counterparts that these hybrids can be made of. The properties from each part can be tailored in order to contribute to a final desired characteristic or the combined properties from both. The unique combination of useful properties found in these materials include electronic conductivity (e or h+), ionic transport, reversible electroactivity, electrooptical properties typical of semiconductors as well as electrochromic, pH- and composition-dependent properties, all of them to add to their polymeric nature. This is an excellent basis for the design of hybrid materials in which either of these properties or their combinations work to enhance or combine with those of a myriad inorganic phases with electronic, magnetic, photochemical, electrochemical, optical or catalytic properties. A large variety of functional hybrid materials can thus be designed and fabricated in which multifunctionality can be easily built to address specific technological needs. In this work we present our most recent results on new synthesis methodology developed for the chemical synthesis of the hybrid PAni/PMo12 and their application as electrochemical supercapacitors. We also report the synthesis of a new hybrid material of PEDOT/PMo12 synthesized for the first time by chemical methods and applied also in electrochemical supercapacitors. Initial results shows capacitance values as high as 168 F/g for the hybrid PAni/PMo12 and about 130 F/g for the hybrid PEDOT/PMo12.  相似文献   

18.
传统超级电容器受低能量密度的限制,在当今器件研发中需更加关注电极材料结构-组成-性能研究。 本文总结了新型赝电容器的发展历程及其研发过程中存在的挑战与解决措施,着重从胶体离子超级电容器电极材料等新型的电极材料和氧化还原电解质两个方面进行综述。 原位合成的胶体离子超级电容器电极材料比非原位合成的电极材料具有更高的反应活性,并且以近似离子的状态存在,有效增加了电极材料的比容量。 氧化还原电解质的使用在不改变电极材料的前提下,进一步提高了超级电容器的能量密度。 初步介绍了新型锂离子电容器。 锂离子电容器同时使用电池型材料和电容型材料,可提高其能量密度。 依据当前超级电容器的研发现状,未来有望将电池材料和电容器材料结合使用,进而形成电池电容器或电容电池,使其同时具有高的能量密度和功率密度。  相似文献   

19.
超级电容器最大的优点是具有优良的脉冲充放电性能和快速充放电性能,同时具有循环寿命长、工作温度范围宽、安全无污染等特性,但能量密度较低. 本文对超级电容器的工作原理、发展状况、缺陷所在和改进方法进行了简要介绍,以本课题组在高比能超级电容器方面的研究工作为主线,结合近几年的文献报道,重点阐述了超级电容器能量密度的提升策略. 主要围绕以下三个方面开展了工作:1)通过将电极材料尺寸纳米化来提高传统电极材料的比容量或开发其他高比容量的电极材料;2)发展具有高电压窗口的离子液体电解液,或利用不同材料在不同电位区间的电容特性构筑不对称电容器,从而提高超级电容器的电压窗口;3)将超级电容器和锂离子电池进行“内部交叉”构筑兼具高能量密度和高功率密度的锂离子混合电容器. 最后,对超级电容器的发展进行了展望.  相似文献   

20.
We highlight the impact of surfactants, routinely used in the fabrication of graphene, which can significantly influence the performance of supercapacitors. Through the utilisation of various graphitic forms we offer insight into the design and fabrication of graphene based supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号