首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new lanthanide-organic coordination polymer incorporating both substituted imdazole dicarboxylate and formate auxiliary ligand, namely {[Yb3(HEimda)42-HCOO) · 4H2O] · 2H2O} n (I) (H3Eimda = 1H-2-ethyl-4,5-imidazole-dicarboxylic acid), has been prepared and was structurally characterized by elemental analysis, IR and X-ray diffraction. It crystallizes in the monoclinic system, space group of C2/c. The polymer I is built from two dimensional (2D) double decker networks based on the Ln4HEimda4 tetranuclear basic carboxylate as secondary building unit. The extensive hydrogen bonds extend the 2D lamellar network into a 3D supramolecular aggregate. The emission spectrum of polymer I exhibits ligand-to-metal charge-transfer luminescence. Variable-temperature magnetic susceptibility measurement reveals that the end to end bridging fashion of formate group results in the depopulation of the stark levels for a single Yb3+ ion and/or possible antiferromagntic interactions between Yb3+ ions within the carboxylato bridged dinuclear unit.  相似文献   

2.
In this work, a novel and rare coordination polymer, [Zn(L)(Bipy)(H2O)] n · (H2O)4 (H2L??sphenylpropylmalonate acid, Bipy??4,4??-bipyridine), has been synthesized and characterized by elemental analysis, FT-IR spectroscopy, and solid fluorimetry studies. In the crystal, the Zn2+ ion of the complex is hexacoordinated in a slightly distorted octahedral configuration forming the unit structure, 2D structure, and 3D framework. The supramolecular architecture was constructed by a unit of (H2O)4 discrete water cluster. Besides, the coordination polymer displays strong emission spectra due to the metal-to-ligand charge-transfer transition, having potential applications as fluorescent materials.  相似文献   

3.
A novel approach for in situ generation of AgI quantum dots by the confinement of a pillar[5]arene‐based supramolecular polymer network has been successfully developed. The supramolecular polymer network ( SPN‐QP ) was constructed by using a bis‐8‐hydroxyquinoline‐modified pillar[5]arene derivative as a host ( H‐QP ) and a bis‐pyridinium‐modified decane as guest ( G‐PD ). The SPN‐QP shows ultrasensitive response for Ag+. The limit of detection is about 7.44×10?9 M..Interestingly, when I? was added to the SPN‐QP +Ag+ system, an unexpected strong warm‐white fluorescence emission was observed. After carefu investigation, we found that the strong warm‐white fluorescence emission could be attributed to the in situ formation of AgI quantum dots under the confinement of the supramolecular polymer network ( SPN‐QP ). Based on this approach, ultrasensitive detection of I? was realized. The limit of detection for I? is 4.40×10?9 M. This study provides a new way for the preparation of quantum dots under the confinement of supramolecular polymer network as well as ultrasensitive detection of ions by in situ formation of quantum dots.  相似文献   

4.
《中国化学快报》2023,34(7):108028
Organic radical as a powerful tool has been extensively applied in synthetic chemistry. However, harnessing radical-mediated noncovalent interactions to fabricate soft materials remains elusive. Here we report a new category of supramolecular hydrogel system held by multiple radical-radical (polyradical) interactions, and its photosensitive cross-linking structure. A simple polyacrylamide with triarylamine (TAA) pendants is designed as the precursor. The TAA units in polymer can be converted into active TAA⁺ radical cations with light and further associate each other via TAA⁺‒TAA⁺ stacking interactions to form stable supramolecular network. Temporal control of the light irradiation dictates the degree of radical stacks, thus regulating the mechanical performance of the resulting hydrogel materials on-demand. Moreover, the reversible collapse of this hydrogels can be promoted by adding radical scavenger or exerting reduction voltage.  相似文献   

5.
A facile, efficient technique was built to synthesize a supramolecular material containing quadruple hydrogen bonding sites. The current approach presented here involves a single-step reaction between the amine of precursor, e.g. methyl isocytosine (MIC) and the epoxy group of polymer, e.g. poly(ethylene glycol diglycidyl ether) (PEG DGE, Mn = 526 g/mol, as verified using 1H NMR and FT-IR spectroscopy. Wide angle X-ray scattering (WAXS), UV/visible spectroscopy and differential scanning calorimeter (DSC) clearly show that the product is not a simple mixture of two components, but the supramolecular polymer containing quadruple hydrogen bonding sites. Complex melt viscosities reveal that mechanical properties of the supramolecular polymer are enhanced by more than 104 times compared to the pristine low molecular weight polymer, giving rise to the significant change of physical state from liquid to solid. Current approach also illustrates an advantageous route because it does not need the selective use of monofunctionalized precursor and not produce a dead, difunctionalized precursor.  相似文献   

6.
Supramolecular copolymers are an emerging class of materials, which bring together different properties and functionalities of multiple components via noncovalent interactions. While it is widely acknowledged that the repeating unit sequence plays an essential role on the performance of these materials, mastering and tuning the supramolecular copolymer sequence is still an open challenge. To date, only statistical supramolecular copolymers have been reported using cyclic peptide–polymer conjugates as building blocks. To enrich the diversity of tubular supramolecular copolymers, we report here a strategy of controlling their sequences by introducing an extra complementary noncovalent interaction. Hence, two conjugates bearing one electron donor and one electron acceptor, respectively, are designed. The two conjugates can individually assemble into tubular supramolecular homopolymers driven by the multiple hydrogen bonding interactions between cyclic peptides. However, the complementary charge transfer interaction between the electron donor and acceptor makes each conjugate more favorable for complexing with its counterpart, resulting in an alternating sequence of the supramolecular copolymer. Following the same principle, more functional supramolecular alternating copolymers are expected to be designed and constructed via other complementary noncovalent interactions (electrostatic interactions, metal coordination interactions, and host–guest interactions, etc.).

Tubular supramolecular alternating copolymers using cyclic peptide–polymer conjugates are synthesized by the introduction of an extra complementary noncovalent interaction.  相似文献   

7.
A new type of strategy for photo-induced supramolecular polymerization based on hostguest interaction has been explored. A kind of monomer containing dibenzo-24-crown-8 (DB24C8) macrocycle and dibenzylammonium (DBA) site was designed and synthesized. The coumarin, as a photocleavable protector, was introduced to the end of the monomer whose polymerization can be irradiated by UV light via the hostguest interactions between DB24C8 moieties and DBA units.  相似文献   

8.
The sorption of organic molecules on the surfaces of a number of adsorbents based on a microporous copolymer of styrene and divinylbenzene modified with different quantities of uracil is studied by means of inverse gas chromatography at infinite dilution. Samples containing 10–6, 10–5, 10–4, 10–3, 10–2, and 0.5 × 10?1 weight parts of uracil (the рС of uracil ranges from 1.3 to 6) are studied. The contributions from different intermolecular interactions to the Helmholtz energy of sorption are calculated via the linear free energy relationship. It is found that as the concentration of uracil on the surface of the polymer adsorbent grows, the contributions from different intermolecular interactions and the conventional polarity of the surface have a bend at рС = 3, due probably to the formation of a supramolecular structure of uracil. Based on the obtained results, it is concluded that the formation of the supramolecular structure of uracil on the surface of the polymer adsorbent starts when рС < 3.  相似文献   

9.
《中国化学快报》2022,33(5):2455-2458
A linear supramolecular polymer with controllable features based on twisted cucurbit[14]uril (tQ[14]) and cucurbit[8]uril (Q[8]) was firstly fabricated via an effective self-sorting strategy. Herein we designed a monomer, 1?butyl?1′-(naphthalen- 2-ylmethyl)-4,4′-bipyridinium bromide (BNB), that contains bipyridyl, aliphatic butyl and aromatic naphthyl groups, simultaneously. Two host molecules, tQ[14] and Q[8] were employed to develop an effective strategy for constructing a linear supramolecular polymer with controllable features. The alkyl groups on both sides of BNB could insert into the two cavities of tQ[14], the naphthyl part of BNB via π-π stacking in Q[8] cavity, serving as the driving force for supramolecular polymerization. Through self-sorting of the monomer, tQ[14] and Q[8], led to the formation of the linear supramolecular polymer. Depolymerization could be achieved by addition of adamantane hydrochloride (AH) which driven two BNB guest molecules out of the Q[8] cavity. This self-sorting strategy has great potential, not only for designing supramolecular polymer materials with different controllable structures through introduction of multiple functional groups, but also for broadening the application of twisted cucurbit[14]uril in supramolecular chemistry.  相似文献   

10.
Atsuhisa Miyawaki 《Tetrahedron》2008,64(36):8355-8361
Branched supramolecular polymers have been prepared from the mixture of 3-cinnamamide-α-CD (1) and 3-Nα-cinnamamidehexancarbonyl-N?-cinnamamide-lysinamide-α-CD (3) and from the mixture of 3-cinnamamidehexanamide-α-CD (2) and 3. Compounds 1 and 2 formed a linear supramolecular polymer, whereas compound 3 having two guest moieties formed a hyperbranched supramolecular polymer. Physical properties of these supramolecular polymers were studied by viscosity measurements in aqueous solutions. When compound 3 was added to the solution of compound 2, the ηsp/C value of the mixture of 2 and 3 was found to be much higher than that of compound 2. These results indicate that compound 3 functions as a branching moiety to increase the viscosity. Supramolecular polymers consisting of compound 2 or 3 did not show the viscosity increase, whereas the mixture of 2 and 3 gave highly viscous solutions and formed fibers from the concentrated aqueous solutions. It is caused by the branching of linear supramolecular polymers with compound 3 and hydrophobic and/or hydrogen bonding interactions between supramolecular polymers.  相似文献   

11.
A new metal-organic coordination polymer [Zn(Pydc)(Dppz)] n (I) (H2Pydc = 2,6-pyridinedicarboxylic acid, Dppz = dipyrido[3,2-a:2′,3′-c]phenazine) was hydrothermally synthesized and characterized by elemental analysis, IR and X-ray single-crystal diffraction. The X-ray diffraction analysis reveals that I crystallizes in the monoclinic system, space group P21/c. The Pydc2? ligands adopt O,N,O′-tridentate chelating and monodentate bridging coordination mode to link two adjacent Zn2+ ions to form a one-dimensional (1D) zigzag chain. The adjacent chains are further linked through hydrogen bonds and π-π stacking interactions, forming a three-dimensional (3D) supramolecular framework. The unit cell parameters for I: a = 7.332(3) Å, b = 36.023(9) Å, c = 7.8838(13) Å, β = 105.65(3), V = 2005.1(10) Å3, Z = 4.  相似文献   

12.
Combining the concepts of supramolecular polymers and dendronized polymers provides the opportunity to create bulky polymers with easy structural modification and tunable properties. In the present work, a novel class of side‐chain supramolecular dendronized polymethacrylates is prepared through the host–guest interaction. The host is a linear polymethacrylate (as the backbone) attached in each repeat unit with a β‐cyclodextrin (β‐CD) moiety, and the guest is constituted with three‐fold branched oligoethylene glycol (OEG)‐based first‐ (G1) and second‐generation (G2) dendrons with an adamantyl group core. The host and guest interaction in aqueous solution leads to the formation of the supramolecular polymers, which is supported with 1H NMR spectroscopy and dynamic light scattering measurements. The supramolecular formation was also examined at different host/guest ratios. The water solubility of hosts and guests increases upon supramolecular formation. The supramolecular polymers show good solubility in water at room temperature, but exhibit thermoresponsive behavior at elevated temperatures. Their thermoresponsiveness is thus investigated with UV/Vis and 1H NMR spectroscopy, and compared with their counterparts formed from individual β‐CD and the OEG dendritic guest. The effect of polymer concentration and molar ratio of host/guest was examined. It is found that the polar interior of the supramolecules contribute significantly to the thermally‐induced phase transitions for the G1 polymer, but this effect is negligible for the G2 polymer. Based on the temperature‐varied proton NMR spectra, it is found that the host–guest complex starts to decompose during the aggregation process upon heating to its dehydration temperature, and this decomposition is enhanced with an increase of solution temperature.  相似文献   

13.
The cooperative electrostatic attraction and π-π stacking between tetrahedral tetrapyridinium and three tetraanionic tetraphenylethylenes led to the formation of a new series of supramolecular polymers in water.  相似文献   

14.
A novel supramolecular system, which is made up of a dibenzo[24]crown‐8 (DB24C8) ring component linked with a calix[4]arene derivative, a dumbbell component, containing a secondary ammonium center (‐NR2H2+‐) and a 4,4′‐bipyridinium (BIPY2+) unit, and stoppered with two 3,5‐di‐tert‐butylphenyl groups on the two termini of the dumbbell component, has been synthesized. The system displays a combination of two processes: the pH‐induced shuttling of a DB24C8 ring and the complexation/decomplexation of K+ ions. The switching process of this supramolecular system was investigated in detail by 1H NMR spectroscopy. The results showed that the supramolecular system can only switch smoothly in CD3CN. The two separated switchable processes can run together smoothly in this supramolecular system.  相似文献   

15.
We report kinetically controlled chiral supramolecular polymerization based on ligand–metal complex with a 3 : 2 (L : Ag+) stoichiometry accompanying a helical inversion in water. A new family of bipyridine-based ligands (d-L1, l-L1, d-L2, and d-L3) possessing hydrazine and d- or l-alanine moieties at the alkyl chain groups has been designed and synthesized. Interestingly, upon addition of AgNO3 (0.5–1.3 equiv.) to the d-L1 solution, it generated the aggregate I composed of the d-L1AgNO3 complex (d-L1 : Ag+ = 1 : 1) as the kinetic product with a spherical structure. Then, aggregate I (nanoparticle) was transformed into the aggregate II (supramolecular polymer) based on the (d-L1)3Ag2(NO3)2 complex as the thermodynamic product with a fiber structure, which led to the helical inversion from the left-handed (M-type) to the right-handed (P-type) helicity accompanying CD amplification. In contrast, the spherical aggregate I (nanoparticle) composed of the d-L1AgNO3 complex with the left-handed (M-type) helicity formed in the presence of 2.0 equiv. of AgNO3 and was not additionally changed, which indicated that it was the thermodynamic product. The chiral supramolecular polymer based on (d-L1)3Ag2(NO3)2 was produced via a nucleation–elongation mechanism with a cooperative pathway. In thermodynamic study, the standard ΔG° and ΔHe values for the aggregates I and II were calculated using the van''t Hoff plot. The enhanced ΔG° value of the aggregate II compared to that of the formation of aggregate I confirms that aggregate II was thermodynamically more stable. In the kinetic study, the influence of concentration of AgNO3 confirmed the initial formation of the aggregate I (nanoparticle), which then evolved to the aggregate II (supramolecular polymer). Thus, the concentration of the (d-L1)3Ag2(NO3)2 complex in the initial state plays a critical role in generating aggregate II (supramolecular polymer). In particular, NO3 acts as a critical linker and accelerator in the transformation from the aggregate I to the aggregate II. This is the first example of a system for a kinetically controlled chiral supramolecular polymer that is formed via multiple steps with coordination structural change.

The nanoparticles were transformed into the supramolecular polymer as the thermodynamic product, involving a helical inversion from left-handed to right-handed helicity.  相似文献   

16.
Modular design method for designing and synthesizing microporous metal-organic frameworks (MOFs) with selective catalytical activity was described. MOFs with both nano-sized channels and potential catalytic activities could be obtained through self-assembly of a framework unit and a catalyst unit. By selecting hexaaquo metal complexes and the ligand BTC (BTC=1,3,5-benzenetricarboxylate) as framework-building blocks and using the metal complex [M(phen)2(H2O)2]2+ (phen=1,10-phenanthroline) as a catalyst unit, a series of supramolecular MOFs 1-7 with three-dimensional nano-sized channels, i.e. [M1(H2O)6]·[M2(phen)2(H2O)2]2·2(BTC)·xH2O (M1, M2Co(II), Ni(II), Cu(II), Zn(II), or Mn(II), phen=1,10-phenanthroline, BTC=1,3,5-benzenetricarboxylate, x=22−24), were synthesized through self-assembly, and their structures were characterized by IR, elemental analysis, and single-crystal X-ray diffraction. These supramolecular microporous MOFs showed significant size and shape selectivity in the catalyzed oxidation of phenols, which is due to catalytic reactions taking place in the channels of the framework. Design strategy, synthesis, and self-assembly mechanism for the construction of these porous MOFs were discussed.  相似文献   

17.
《中国化学快报》2023,34(3):107639
The development of out-of-equilibrium self-assembly systems using light as input fuel is highly desirable and promising for the fabrication of smart supramolecular materials. Herein, we report the construction of new artificial light-fueled dissipative molecular and macroscopic self-assembly systems based on a visible-light-responsive transient quadruple H-bonding array, which consists of an azobenzene-modified ureidopyrimidinone (UPy) module (Azo-O-UPy) and a nonphotoactive diamidonaphthyridine (DAN) derived competitive binder (Napy-1). The visible light (410 nm) irradiation can induce the E to Z isomerization of the azobenzene unit of E-Azo-O-UPy to produce Z-Azo-O-UPy with an opened UPy binding site, which can complex with Napy-1 to form a quadruply H-bonded heterodimer. The heterodimer is metastable and can be quickly disassembled in dark, owing to the fast thermal relaxation of Z-Azo-O-UPy to E-Azo-O-UPy. While introducing such transient quadruple H-bonding interaction into a linear polymer system or a polymeric gel system, light-fueled out-of-equilibrium polymeric assembly both at molecular and macro-scale can be achieved.  相似文献   

18.
The strong dimerizing, quadruple hydrogen-bonding ureido-pyrimidone unit is used to obtain reversible polymer networks. A new synthetic route from commercially available starting materials is described. The hydrogen-bonding ureido-pyrimidone network is prepared using 3(4)-isocyanatomethyl-1-methylcyclohexyl-isocyanate (IMCI) in the regioselective coupling reaction of multi-hydroxy functionalized polymers with isocytosines. 1H- and 13C-NMR, IR, MS, and ES-MS analysis, performed on a model reaction using butanol, demonstrated the formation of the hydrogen-bonding ureido-pyrimidone unit in a yield of more than 95%. The well-defined, strong hydrogen-bonding ureido-pyrimidone network is compared with a traditional covalently bonded polymer network, a multi-directional hydrogen-bonded polymer network based on urea units, and a reference compound. The advantage of the reversible, hydrogen-bonded polymer networks is the formation of the thermodynamically most favorable products, which show a higher “virtual” molecular weight and shear modulus, compared to the irreversible, covalently bonded polymer network. The properties of the ureido-pyrimidone network are unique; the well-defined and strong dimerization of the ureido-pyrimidone unit does not require any additional stabilization such as crystallization or other kinds of phase separation, and displays a well-defined viscoelastic transition. The ureido-pyrimidone network represents the first example of a truly reversible polymer network showing these features. Furthermore, the ureido-pyrimidone dimerization is strong enough to construct supramolecular materials possessing acceptable mechanical properties. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3657–3670, 1999  相似文献   

19.
New AB-type supramolecular polymers have been prepared by acid-promoted self-assembly of an aminododecyloxy-calix[5]arene monomer precursor. The number-average degree of polymerization has been found to be dependent on the concentration of the salt monomer and on the nature of the counterion (i.e., chloride, picrate or hexafluorophosphate).Chain-length regulation experiments have been carried out, employing orthogonal chain stoppers capable of selectively interacting with a given moiety of the AB-type monomer/polymer. Competitive calix[5]arene ‘caps’ and n-butylammonium ion ‘plugs’ have been used to control the extent of self-assembly of the polymer, in turn interacting with the ammoniumdodecyloxy or with the cavity end-groups of the supramolecular calixarene assembly. These experiments, conveniently carried out at a 10 mM concentration, can be easily followed by 1H NMR spectroscopy.  相似文献   

20.
Host–guest assembly in droplet-based microfluidics opens a new avenue for fabricating supramolecular hydrogel microcapsules with high monodispersity and controlled functionality. In this paper, we demonstrate a single emulsion microdroplet platform to prepare microcapsules with supramolecular hydrogel skins from host molecule cucurbit[8]uril and guest polymer anthracene-functionalized hydroxyethyl cellulose. In contrast to construction of microcapsules from a droplet-in-droplet double emulsion, here the electrostatic attraction between charged polymer and surfactant facilitates formation of defined supramolecular hydrogel skins in a single emulsion. Furthermore, by taking advantage of dynamic interactions and the tunable cross-linked supramolecular hydrogel network, it is possible to prepare microcapsules with triggered and UV-controlled molecular permeability. These could be potentially used in a delivery system for e.g. agrochemicals, nutraceuticals or cosmetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号