首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
建立了原位衍生分散液相微萃取-气相色谱/质谱检测饮用水中痕量三氯生的方法.将含有30.0 μL氯苯(萃取剂)和50.0 μL乙酸酐(衍生试剂)的0.5 mL丙酮(分散剂)作为萃取体系,快速注入到5.0 mL含有K2CO3(0.5%, m/V)的水溶液中.在5000 r/min下离心2 min后,得到(10±0.5) μL沉积相(氯苯),取底部沉积相1.0 μL进行气相色谱/质谱联用仪分析.方法的线性范围为0.05~50 μg/L(r=0.9994),检出限为0.01 μg/L;相对标准偏差2.0%(n=5).利用本方法检测了饮用水中的三氯生,平均加标回收率分别为92.1%和98.4%,结果满意.  相似文献   

2.
建立了分散液相微萃取(DLLME)与气相色谱-微池电子捕获检测器(GC-μECD)、气相色谱-质谱(GC/MS)联用快速测定水样中42种多溴联苯醚(PBDEs)的新方法。以氯苯(25μL)为萃取剂,乙腈(1.0mL)为分散剂,混匀后注入5.00mL水样中,以3000r/min离心15min,取出下层有机相氮气吹干、定容后取1μL进样分析。在最佳条件下,PBDEs能够被充分提取和良好分离,在2.0~250.0μg/L浓度范围内呈现良好的线性关系,线性相关系数为0.9982~0.9999;检出限为0.2~4.9μg/L(S/N=3)。将本方法应用于白洋淀水中PBDEs的分析检测,样品中均有BDE-166和BDE-209的检出,对水样进行两个浓度水平(0.017和0.170μg/L)的加标实验,回收率为71.4%~110.8%,相对标准偏差为0.99%~11.84%(n=3),能够满足环境水样中痕量PBDEs的测定要求。  相似文献   

3.
移取饮用水样品10.0mL,加入0.5g氯化钠和100μL二硫化碳,以2 500r·min~(-1)转速离心5min,静置5min后,移取离心管底部的沉积相(约65μL),采用气相色谱法测定其中11种氯苯类化合物的含量。11种氯苯类化合物用Agilent JW DB-WAX毛细管色谱柱分离,电子俘获检测器检测。11种氯苯类化合物的质量浓度在一定范围内与其对应的峰面积呈线性关系,方法的检出限(3S/N)为0.032~0.97μg·L~(-1)。以空白样品为基体进行加标回收试验,所得回收率为86.7%~101%,测定值的相对标准偏差(n=6)为1.2%~3.3%。  相似文献   

4.
建立了猪尿中盐酸赛庚啶残留量的分散液相微萃取(DLLME)/超高效液相色谱-串联质谱内标检测法。将5 mL猪尿用5%氨水调节至pH 11.0,以三氯甲烷为萃取剂,异丙醇为分散剂,配比为5∶3,组成微萃取体系共2 mL进行分散液相微萃取,4℃下以8 000 r/min高速离心5 min后获得提取液,在50℃下氮气吹干后,经1 mL 0.1%甲酸-乙腈(80∶20)溶解后使用超高效液相色谱-三重四极杆串联质谱检测,以盐酸二苯拉林(Diphenylpyraline,DPP)为内标,正离子电喷雾下多反应监测模式进行分析。结果显示,标准品溶液在0.5~25μg/L范围内线性关系良好(r=0.999 5),方法的检出限为0.05μg/L,定量下限为0.1μg/L。尿样在0.1~5.0μg/L加标范围内的回收率为90.2%~109.7%,RSD不高于8.5%,表明该方法具有较好的准确度与精密度。  相似文献   

5.
建立了水中硝基苯类化合物(硝基苯、1-硝基甲苯、2-硝基甲苯、3-硝基甲苯和邻氯硝基苯)的液相微萃取-气相色谱/质谱检测方法。实验结果显示:甲苯为最佳的萃取剂。确定最佳实验条件为:甲苯体积2μL,萃取时间15 min,搅拌速度300 r/min,萃取温度45℃,溶液pH=5。在此条件下,各目标物的萃取富集倍数为30~38,线性范围为2~250μg/L,检出限为1~2μg/L,测定的相对标准偏差为5%~7%。  相似文献   

6.
建立了超声辅助基质分散液-液微萃取(UA-DLLME)/气相色谱-串联质谱(GC-MS)同时测定地下和地表水中15种硝基苯、19种苯胺和14种邻苯二甲酸酯类化合物的分析方法。采用Plackett-Burman设计从萃取剂、分散剂体积、萃取温度、萃取时间和离子强度等变量中筛选最显著的影响因素,并利用中心组合设计(CCD)结合响应曲面图优化显著因素,最终确定最佳的萃取条件:10 mL水样在2 g/L NaCl条件下迅速加入0.65 mL乙腈(分散剂)和40μL四氯化碳(萃取剂),于40℃超声2 min,混合液以3 500 r/min离心3 min。结果显示,目标分析物在1~200μg/L质量浓度范围内线性良好,相关系数不低于0.995 8,方法的检出限(MDL)为0.001~0.030μg/L,定量下限(LOQ)为0.004~0.120μg/L,在低、中、高3个加标浓度下的平均回收率为77.4%~113%,相对标准偏差(RSD)均不高于9.6%(n=6)。  相似文献   

7.
研究了用中空纤维膜液相微萃取-气相色谱质谱法测定水中的百菌清。通过实验确定最佳萃取条件为:萃取剂为甲苯,萃取剂用量3μL,水样体积10mL,萃取温度为45℃,萃取时间为15 min,搅拌速率为500 r/min,萃取后取1μL有机溶剂直接进样进行气相色谱质谱分离检测。在此条件下,百菌清的富集倍数为450倍,方法的线性范围为5~600μg/L,检出限为0.5μg/L。测定实际水样的加标回收率在92.3%~96.0%之间。该方法可以用于水中百菌清的快速检测。  相似文献   

8.
建立了分散液液微萃取-气相色谱电子捕获检测器测定水中15种硝基苯类物质的方法.筛选出了具有高密度且能够适用于电子捕获检测器的萃取剂.优化了色谱条件,对萃取剂种类及用量、分散剂种类及用量、萃取时间、萃取温度等条件进行了优化.DB-35毛细管柱对15种硝基苯类物质具有最好的分离效果.使用程序升温,初始80℃ 保持2 min,以5℃/min速率升温至180℃,可以在22 min内完成分离.以100μL氯苯作为萃取剂、400μL甲醇作为分散剂,对5.00 mL水样在室温下进行萃取,仅需30 s即可达到萃取平衡,15种目标物的萃取率均可达到90%以上,富集倍数达到45.0~48.8.离心分离,取下层沉积相进行气相色谱测定,使用电子捕获检测器检测,方法的定量限为0.03~0.15μg/L,线性范围为0.20~50.0μg/L,相关系数不低于0.998.方法的相对标准偏差在3.3%~8.9%之间,加标回收率在86.0%~103.5%之间.  相似文献   

9.
建立了一种以中空纤维液相微萃取(HF-LPME)前处理样品,利用气相色谱/质谱(GC/MS)对水中痕量氯化苄进行检测的方法。优化的实验条件为:3.0μL甲苯为萃取溶剂,在中等搅拌速率下室温萃取15 min。方法的线性范围为1~100μg/L,线性相关系数r=0.9995;检出限为0.5μg/L(S/N=3);相对标准偏差为5.37%(n=5)。用于水库水和被污染河水的测定,加标回收率分别为95.7%和93.6%,结果满意。  相似文献   

10.
分散液相微萃取-气相色谱联用分析水样中菊酯类农药残留   总被引:22,自引:6,他引:16  
臧晓欢  王春  高书涛  周欣  王志 《分析化学》2008,36(6):765-769
将分散液-液微萃取(DLLME)与气相色谱-电子俘获检测(GC-ECD)技术相结合,建立了高灵敏度测定水样中7种菊酯类农药残留的新方法。对影响萃取富集效率的因素进行优化,萃取条件选定为:在5.0mL样品溶液中加入10.0μL氯苯和1.0mL丙酮,分散混匀后,以5000r/min离心5min,吸出萃取溶剂氯苯直接进样分析。在优化条件下7种菊酯类农药的富集倍数高达708~1087倍。以α-六六六为内标,7种菊酯类农药在0.8~600μg/L范围内具有良好的线性关系,线性相关系数在0.9990~0.9999之间;检出限为0.04~0.10μg/L(S/N=3)。本方法已应用于自来水、井水及河水等实际水样的分析,平均加标回收率在76.0%~116.0%之间;相对标准偏差在3.1%~7.2%之间。方法具有操作简单、富集效率高和灵敏度高等特点,可满足水样中菊酯类农药残留的检测要求。  相似文献   

11.
In this article, a novel and simple microextraction method, termed ionic liquid/ionic liquid dispersive liquid–liquid microextraction (IL/IL‐DLLME), has been designed and developed for the rapid enrichment and analysis of environmental pollutants. Instead of using hazardous organic solvents, two kinds of ILs, hydrophobic IL and hydrophilic IL, were used as extraction solvent and disperser solvent in IL/IL‐DLLME step, respectively. Permethrin and biphenthrin, two of the often‐used pyrethroid pesticides, were used as model compounds. Factors that may affect the enrichment efficiencies were investigated and optimized in detail. Under optimum conditions, permethrin and biphenthrin exhibited a wide linear relationship over the range 1–100 μg/L. For permethrin and biphenthrin, the precisions were 4.65–7.78%, and limits of detection were found to be 0.28 and 0.83 μg/L, respectively. Satisfactory results were achieved when the present method was applied to analyze the target compounds in real‐world water samples with spiked recoveries over the range 84.1–113.5%. All these facts indicated that IL/IL‐DLLME is a simple and rapid alternative for the enrichment and analysis of environmental pollutants and will have a wide application perspective in the future.  相似文献   

12.
Liquid crystals displays (LCDs) currently dominate the display market, wherein a wide viewing angle is considered as one of the most important characteristics. However, for LCDs with wide viewing angles, some private information inevitably becomes more visible; thus, an LCD with a switchable viewing angle has attracted greater interest. Here, we report a novel switchable viewing angle film that can make the viewing angle of an LCD electrically switchable between ±30° and ±60°, i.e. between an anti-peeping mode and a share mode, by 5.0 V is turned on and off, respectively. The response time necessary to change between the modes is in milliseconds. It is believed that it has potential applications in LCDs with high quality.  相似文献   

13.
The first dispersive liquid liquid microextraction scheme followed by liquid chromatography‐post column derivatization for the determination of the antiviral drug rimantadine in urine samples is demonstrated. The effect of the type and volume of organic extraction solvent, type and volume of disperser solvent, sample pH, ionic strength, extraction time, and centrifugation speed on the extraction efficiency were studied. Rimantadine and the internal standard (amantadine) were chromatographed using a reversed phase monolithic stationary phase with a mixture of equal volumes of methanol and phosphate buffer (pH = 3) as mobile phase. On‐line post‐column derivatization of the analyte was performed using a “two‐stream” manifold with o‐phthalaldehyde and N‐acetyl‐cysteine at alkaline medium. Under the optimized extraction conditions, the enrichment factor of rimantadine was 58. The linear range was 5–100 µg/L with correlation coefficient r of 0.9984 while the limit of detection achieved was 0.5 µg/L. The within‐day and between‐day precision for the tested concentration levels were less than 14.3% and the mean recoveries obtained from the spiked samples were ranged between 87.5 and 113.9%. The main advantages of the proposed method are the simplicity of operation, rapidity, low cost, and low limit of detection of the analyte.  相似文献   

14.
An ionic liquid foam floatation coupled with ionic liquid dispersive liquid–liquid microextraction method was proposed for the extraction and concentration of 17‐α‐estradiol, 17‐β‐estradiol‐benzoate, and quinestrol in environmental water samples by high‐performance liquid chromatography with fluorescence detection. 1‐Hexyl‐3‐methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion‐pairing and salting‐out agent NH4PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1‐hexyl‐3‐methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid–liquid microextraction was widened.  相似文献   

15.
Two nematic liquid crystal (LC) monomers containing double bonds in the side chain were designed and synthesised. Length of the side groups varied from 1 to 2 methylene units. The side-chain polymers were synthesised by hydrosilylation reaction. The molecular structures of the intermediates and the LC monomers were characterised by Fourier transform infrared, elemental analysis and nuclear magnetic resonance spectroscopy. The thermal phase behaviour of the monomers and polymers were investigated by differential scanning calorimetry and polar optical microscopy coupled with hot stage. The LC monomers showed only one nematic mesophase in the cooling process. And, the two polymers exhibit an enantiotroppic nematic mesophase either in the heating or in the cooling process.  相似文献   

16.
Summary We review recent progress in the computer simulation of liquid crystals, with special emphasis on hard particle models. Surprisingly, the simplest molecular models, taking account only of molecular size and shape, are sufficient to generate a wide variety of liquid crystalline phases, closely analogous to those observed in real life. Thermodynamic stability of different phases is very sensitive to shape, and presumably will also be sensitive to further details of intermolecular interactions as they are incorporated into the model. Realistic atom-atom potential models of liquid crystals are available, but the associated simulations are quite expensive. Thus, while idealized models may be used to study quite general, fundamental properties of mesophases, the modelling of specific liquid crystal systems in a realistic way remains a great challenge. Progress continues to be made on both these fronts.  相似文献   

17.
This contribution is a personal view of the rapidly developing subfield of nematic colloids, with an emphasis on possible applications of these materials in future photonic microdevices. A brief overview of the most important phenomena, observed in the past decade in nematic colloids is given. It is explained why integrated photonics based on microstructured liquid crystals is feasible and future challenges towards the realisation of integrated liquid crystal microphotonics are discussed.  相似文献   

18.
An electrochromic liquid crystal (ECLC) material composed of only liquid crystal (LC) and ionic liquid (IL) was developed. The LC containing the substituted diphenylacetylene serves as electrochromic (EC) material to realise transmittance and colour change under the direct current (DC) field, while the IL with the designable cation and anion served as electrolyte. Herein, a series of IL electrolytes was screened to investigate how IL tunes the electro-optic performance of the ECLC cell. By testing the electrochemistry window of ILs in EC cells, IL with the [NTf2]? anion shows adequate electrochemical stability when the EC material undergoes oxidation and reduction. The electro-optic performance of ECLC containing 1-ethoxy-4-[2-(4-pentylphenyl) ethynyl]-benzene (PEB) and IL was then evaluated by UV-vis spectrometry under the control of an electrochemical work station. Compared with other PEB-IL, PEB-[Bmim][NTf2] with [Bmim][NTf2] electrolyte shows a satisfactory transmittance at low operating voltage. Furthermore, Pd NPs in situ formed in [Bmim][NTf2] reduced the EC potential and improved the light scattering of the ECLC cell. In this work, we also designed a bifunctional device based on polymer dispersed liquid crystal (PDLC) that hosts electrochromic guest molecules, and analysed the electro-optical and electrochromic properties of LC electrolyte mixtures, in order to gain control of the incident daylight and glare in building and automotive applications.  相似文献   

19.
A new method for the determination of four sulfonylurea herbicides (metsulfuron-methyl, chlorsulfuron, bensulfuron-methyl and chlorimuron-ethyl) in water samples was developed by dispersive liquid–liquid microextraction coupled with high performance liquid chromatography-diode array detector. Parameters that affect the extraction efficiency, such as the kind and volume of the extraction and disperser solvent, extraction time and salt addition, were investigated and optimised. Under the optimum conditions, the enrichment factors were in the range between 102 and 216. The linearity of the method was obtained in the range of 1.0–100 ng mL?1 with the correlation coefficients (r) ranging from 0.9982 to 0.9995. The method detection limits were 0.2–0.3 ng mL?1. The proposed method has been successfully applied to the analysis of target sulfonylurea herbicides in river, stream and well water samples with satisfactory results.  相似文献   

20.
In this article, homogeneous liquid–liquid extraction (HOLLE), combined with HPLC-fluorescence detector (HPLC-FLD), has been developed for the extraction and determination of polycyclic aromatic hydrocarbons (PAHs) in vegetables. ACN was used as extraction solvent for the extraction of target analytes from vegetables. When the previous extraction process was over, the ACN extract was transferred to the water-immiscible organic phase, tetrachloroethane, used as extraction solvent in HOLLE procedures. Under the optimum conditions, repeatability was carried out by spiking PAHs at concentration level of 12.5 μg/kg, the RSDs varied between 1.1 and 8.5% (n = 3). The LODs, based on S/N of 3, ranged from 0.025 to 0.25 μg/kg. Relative recoveries of PAHs from cucumber and long crooked squash samples were in the range of 72.4–104.9% and 65.5–119.3%, respectively. Compared with the conventional extraction method, the proposed method has the advantage of being quick, easy to operate, and having low consumption of organic solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号