首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimentally, the effects of pressure on reaction rates are described by their pressure derivatives, known as volumes of activation. Transition state theory directly links activation volumes to partial molar volumes of reactants and transition states. We discuss a molecular dynamics method for the accurate calculation of molecular volumes, within which the volumes of molecular species are obtained as a difference between the volumes of pure solvent and solvent with a single molecule inserted. The volumes thus obtained depend on the molecular geometry, the strength and type of the solute-solvent interactions, as well as temperature and pressure. The partial molar volumes calculated using this approach agree well with experimental data. Since this method can also be applied to transition state species, it allows for quantitative analysis of experimental volumes of activation in terms of structural parameters of the corresponding transition states. The efficiency of the approach is illustrated by calculation of volumes of activation for three nonpolar reactions in nonpolar solvents. The results agree well with the experimental data.  相似文献   

2.
The application of the average linear integral isoconversional method developed by Ortega for evaluating the activation energies of solid state reactions may be hindered by experimental noise and the uncertainties associated with selecting appropriate reaction segments. This paper suggests a procedure, called the modified Ortega method, which can avoid or minimize these hindrances. By applying the modified Ortega method to the kinetic analyses of both simulated and experimental data, a more consistent dependence of the activation energy on the extent of reaction conversion was found with those calculated from the modified Vyazovkin method and the Friedman method.  相似文献   

3.
多孔物质气固反应动力学研究   总被引:1,自引:0,他引:1  
利用自主研制的微型流化床反应分析仪(MFBRA)在等温条件下测试了高比表面活性炭氧化反应,并根据基于固体转化的热分析动力学方法及考虑气体在微孔内扩散与反应的应用化工动力学方法求算了动力学参数.在内外扩散抑制最小化的实验条件下,粒径小于5μm的活性炭在700-1000℃的燃烧反应动力学研究表明,根据微型流化床中实验数据,采用等温热分析动力学方法求算得内扩散控制区活化能约为95kJ/mol;弓l入化工动力学方法中的随机孔模型对低温区等温燃烧数据拟合,可得孔结构参数在0.17m^-3左右,反应活化能为178kJ/mol,约为内扩散反应活化能的两倍,最为接近本征的碳燃烧反应活化能.  相似文献   

4.
The method for the calculation of the proton-transfer frequency (nt) and its activation energies (Et) was suggested. Results of the calculations were presented. The experimental data on the activation energy of proton-containing group rotation and protonconductivity values for some hydrates of inorganic acids and acid salts were compared with the calculated ones.  相似文献   

5.
化学模拟生物固氮仍然是当代化学学科的重大基础课题之一,其中心也仍然是探索过渡金属对氮分子的络合活化规律。本文试图用自己建立的以HMO为主,并揉合EHMO、CNDO的量子化学方法研究过渡金属对氮分子的活化问题。1计算方法和结果对氮分子络合活化的计算方法与乙烯分子相似。  相似文献   

6.
In this paper, methods are described that are used for studying first-order reaction kinetics by gas chromatography. Basic theory is summarized and illustrated using the interconversion of 1-chloro-2,2-dimethylaziridine enantiomers as a representative example. For the determination of the kinetic and thermodynamic activation data of interconversion the following methods are reviewed: (i) classical kinetic methods where samples of batch-wise kinetic studies are analyzed by enantioselective gas chromatography, (ii) stopped-flow methods performed on one chiral column, (iii) stopped-flow methods performed on an achiral column or empty capillary coupled in series with two chiral columns, (iv) on-flow method performed on an achiral column coupled in series with two chiral columns, and (v) reaction gas chromatography, known as a dynamic gas chromatography, where the interconversion is performed on chiral column during the separation process. The determination of kinetic and thermodynamic activation data by methods (i) through (iv) is straightforward as the experimental data needed for the evaluation (particularly the concentration of reaction constituents) are accessible from the chromatograms. The evaluation of experiments from reaction chromatography method (v) is complex as the concentration bands of reaction constituents are overlapped. The following procedures have been developed to determination peak areas of reaction constituents in such complex chromatograms: (i) methods based on computer-assisted simulations of chromatograms where the kinetic activation parameters for the interconversion of enantiomers are obtained by iterative comparison of experimental and simulated chromatograms, (ii) stochastic methods based on the simulation of Gaussian distribution functions and using a time-dependent probability density function, (iii) approximation function and unified equation, (iv) computer-assisted peak deconvolution methods. Evaluation of the experimental data permits the calculation of apparent rate constants for both the interconversion of the first eluted (k (A-->B)(app)) as well as the second eluted (k(B-->A)(app)) enantiomer. The mean value for all the rate constants (from all the reviewed methods) was found for 1-chloro-2,2-dimethylaziridine A-->B enantiomer interconversion at 100 degrees C: k (A-->B)(app)=21.2 x 10(-4)s(-1) with a standard deviation sigma=10.7 x 10(-4). Evaluating data for reaction chromatography at 100 degrees C {k (app)=k(A-->B)(app)=k(B-->A)(app)=13.9 x 10(-4)s(-1), sigma=3.0 x 10(-4)s(-1)} shows that differences between k(A-->B)(app) and k(B-->A)(app) are the same within experimental error. It was shown both theoretically and experimentally that the Arrhenius activation energy (E(a)) calculated from Arrhenius plots (lnk(app) versus 1/T) is proportional to the enthalpy of activation {E(a)=DeltaH+RT}. Statistical treatment of Gibbs activation energy values gave: DeltaG (app)=110.5kJmol(-1), sigma=2.4kJmol(-1), DeltaG (A-->B)(app)=110.5kJmol(-1), sigma=2.2kJmol(-1), DeltaG (B-->A)(app)=110.3kJmol(-1), sigma=2.8kJmol(-1). This shows that the apparent Gibbs energy barriers for the interconversion of 1-chloro-2,2-dimethylaziridine enantiomers are equal DeltaG (app)=DeltaG(A-->B)(app)=DeltaG(B-->A)(app) and within the given precision of measurement independent of the experimental method used.  相似文献   

7.
The preparation of activated carbon from sesame shells as raw precursor was investigated in the study by sequentially applying microwave and conventional heating methods assisted by zinc chloride activation. The optimizisation of experimental parameters including microwave power, microwave treatment time, conventional activation time, conventional activation temperature and zinc chloride concentration ratio for the microwave and conventional heating method was performed. The characterization of the prepared activated carbon was done by thermogravimetric and differential thermal measurements, infrared spectroscopy, scanning electron microscopy and specific surface area analyses. The maximum surface area of 1254?m2/g for the prepared activated carbon was obtained at a microwave power of 750?W, a microwave treatment time of 20?min, an activation time of 45?min, an activation temperature of 500°C and zinc chloride concentration ratio of 1:1. Methylene blue and iodine adsorption capacities for the prepared activated carbon were 103 and 1199?mg/g, respectively.  相似文献   

8.
Activated carbon is produced from pecan shells by chemical activation using phosphoric acid. This activation is followed by the treatment with sodium dodecyl sulfate to prepare the surface for the adsorption of phenol and methylene blue from aqueous solution. The results showed a great ability for methylene blue removal with sorption capacity of 410 mg/g at pH 9 and solution concentration of 35 mg/l, while moderate adsorption was obtained for phenol with a capacity of 18 mg/g at pH 11 and the same solution concentration. The increase or decrease in solution pH has a favorable effect on the sorption of both adsorbates. Langmuir and Freundlich models were used to fit the experimental data. The text was submitted by the authors in English.  相似文献   

9.
The group contribution method for activation energies is applied to hydrogen abstraction reactions. To this end an ab initio database was constructed, which consisted of activation energies calculated with the ab initio CBS-QB3 method for a limited set of well-chosen homologous reactions. CBS-QB3 is shown to predict reaction rate coefficients within a factor of 2-4 and Arrhenius activation energies within 3-5 kJ mol(-1) of experimental data. Activation energies in the set of homologous reactions vary over 156 kJ mol(-1) with the structure of the abstracting radical and over 94 kJ mol(-1) with the structure of the abstracted hydrocarbon. The parameters required for the group contribution method, the so-called standard activation group additivity values, were determined from this database. To test the accuracy of the group contribution method, a large set of 88 additional activation energies were calculated from first principles and compared with the predictions from the group contribution method. It was found that the group contribution method yields accurate activation energies for hydrogen-transfer reactions between hydrogen molecules, alkylic hydrocarbons, and vinylic hydrocarbons, with the largest deviations being less than 6 kJ mol(-1). For reactions between allylic and propargylic hydrocarbons, the transition state is believed to be stabilized by resonance effects, thus requiring the introduction of an appropriate correction term to obtain a reliable prediction of the activation energy for this subclass of hydrogen abstraction reactions.  相似文献   

10.
Some preliminary considerations suggest that the so-called ‘compensation law’ is a result of the misinterpretation of evaluation procedure. The both parameters: pre-exponential factor and activation energy are calculated from the same set of experimental data. A confidence ellipse could describe the precision of these parameters. In the case of using the least square method for straight-line parameters evaluation, we could calculate a axes of the ellipse, using experimental data. If the observed relationship between pre-exponential factor and activation energy agree with the ‘pre-calculated’ direction of main axis of confidence ellipse, we have a strong support to believe that the observed ‘compensation’ effect is only an artificial effect of misinterpretation. Some calculations performed for a published experimental data have confirmed these suspicions. This also, indirectly indicates that precision of such experiments is probably lower than expected.  相似文献   

11.
The combined kinetic analysis implies a simultaneous analysis of experimental data representative of the forward solid-state reaction obtained under any experimental conditions. The analysis is based on the fact that when a solid-state reaction is described by a single activation energy, preexponetial factor and kinetic model, every experimental T-alpha-dalpha/dt triplet should fit the general differential equation independently of the experimental conditions used for recording such a triplet. Thus, only the correct kinetic model would fit all of the experimental data yielding a unique activation energy and preexponential factor. Nevertheless, a limitation of the method should be considered; thus, the proposed solid-state kinetic models have been derived by supposing ideal conditions, such as unique particle size and morphology. In real systems, deviations from such ideal conditions are expected, and therefore, experimental data might deviate from ideal equations. In this paper, we propose a modification in the combined kinetic analysis by using an empirical equation that fits every f(alpha) of the ideal kinetic models most extensively used in the literature and even their deviations produced by particle size distributions or heterogeneities in particle morphologies. The procedure here proposed allows the combined kinetic analysis of data obtained under any experimental conditions without any previous assumption about the kinetic model followed by the reaction. The procedure has been verified with simulated and experimental data.  相似文献   

12.
We have developed a novel large-scale multicapillary fluorescent differential display (FDD) platform amenable to further automation. The power of the method is demonstrated by the analysis of T helper cell differentiation. Eight RNA samples from wild type, Stat4 knockout and Stat6 knockout mice were analyzed with 16 anchoring primers and 24 arbitrary primers, resulting in 285 294 sample peaks. Visually selected patterns of differential expression suggest two major regulatory mechanisms: activation and Stat4 genotype. A subset of the findings is reproduced in the confirmatory differential display (DD) that included technical and biological replicates. In a small fragment identification pilot study, we identify Ifi27 and Cct8 to be up-regulated by T cell activation. We present a method for the analysis of electropherogram similarity across large datasets, based on correlation of low-resolution representations of electrophoretic data. We show how it can be applied to analyze experimental and technical variables. Using this method, we demonstrate the effect of activation and genotype. In addition, agreement of our real experimental data to the theoretical basis of DD, as well as issues in anchoring primer selectivity, are studied.  相似文献   

13.
A simple and precise incremental isoconversional integral method based on Li-Tang (LT) method is proposed for kinetic analysis of solid thermal decomposition, in order to evaluate the activation energy as a function of conversion degree. The new method overcomes the limitation of LT method in which the calculated activation energy is influenced by the lower limit of integration. By applying the new method to kinetic analysis of both the simulated nonisothermal case and experimental case of strontium carbonate thermal decomposition, it is shown that the dependence of activation energy on conversion degree evaluated by the new method is consistent with those obtained by Friedman (FR) method and the modified Vyazovkin method. As the new method is free from approximating the temperature integral and not sensitive to the noise of the kinetic data, it is believed to be more convenient in nonisothermal kinetic analysis of solid decompositions.  相似文献   

14.
The role of quantum tunneling in hydrogen shift in linear heptyl radicals is explored using multidimensional, small-curvature tunneling method for the transmission coefficients and a potential energy surface computed at the CBS-QB3 level of theory. Several one-dimensional approximations (Wigner, Skodje and Truhlar, and Eckart methods) were compared to the multidimensional results. The Eckart method was found to be sufficiently accurate in comparison to the small-curvature tunneling results for a wide range of temperature, but this agreement is in fact fortuitous and caused by error cancellations. High-pressure limit rate constants were calculated using the transition state theory with treatment of hindered rotations and Eckart transmission coefficients for all hydrogen-transfer isomerizations in n-pentyl to n-octyl radicals. Rate constants are found in good agreement with experimental kinetic data available for n-pentyl and n-hexyl radicals. In the case of n-heptyl and n-octyl, our calculated rates agree well with limited experimentally derived data. Several conclusions made in the experimental studies of Tsang et al. (Tsang, W.; McGivern, W. S.; Manion, J. A. Proc. Combust. Inst. 2009, 32, 131-138) are confirmed theoretically: older low-temperature experimental data, characterized by small pre-exponential factors and activation energies, can be reconciled with high-temperature data by taking into account tunneling; at low temperatures, transmission coefficients are substantially larger for H-atom transfers through a five-membered ring transition state than those with six-membered rings; channels with transition ring structures involving greater than 8 atoms can be neglected because of entropic effects that inhibit such transitions. The set of computational kinetic rates were used to derive a general rate rule that explicitly accounts for tunneling. The rate rule is shown to reproduce closely the theoretical rate constants.  相似文献   

15.
This article presents, firstly, a short review of methods for evaluating kinetic parameters of solid state reactions and a critical analysis of the isoconversional principle of model free methods. It shows theoretically that the activation energy for complex reactions is not only a function of the reaction degree but also of heating programs, and points out that any method that attempts to extract the dependences of activation energy on conversion degree without considering the dependences of heating programs is problematic. Then an analysis is given of the invariant kinetic parameters (IKP) method and recommends an incremental version of it. Based on the incremental IKP method and model free method, a comprehensive method is proposed that predicts the degree of the dependences of activation energy on heating programs, selects reliable values of activation energy and extracts the values of variable pre‐exponential factor. This comprehensive method is tested using both simulation data and experimental data, the results of which show it can not only give reliable values of kinetic parameters but also be helpful in explaining inconsistencies of kinetic results in solid state reactions. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Near-infrared (NIR) spectroscopy is proposed for the in-line quantitative and kinetic study of the polymerization of ε-caprolactone and eventually to facilitate real-time control of the manufacturing process. Spectra were acquired with a fibre-optic probe operating in transflectance mode immersed in the reactor. The NIR data acquired were processed using a multivariate curve resolution alternating least squares (MCR-ALS) algorithm. The proposed method allows calculation of the concentration and spectral profiles of the species involved in the reaction. The key point of this method is the lack of reference concentrations needed to perform the MCR-ALS method. The use of an extended spectral matrix using both process and pure analyte spectra solves the rank deficiency. The concentration profiles obtained were used to calculate a kinetic fitting of the reaction, but the method was improved by applying kinetic constraints (hard modelling). The rate constants of batches at different temperatures and the energy of activation for this reaction were calculated. Whenever possible, the hard modelling combined with the MCR-ALS method improves the fit of the experimental data: the results show good correlation between the NIR and reference data and allow the collection of high-quality kinetic information on the reaction (rate constants and energy of activation).  相似文献   

17.
A method for the determination of the order of release and the activation energy for the atom formation process from one single absorbance signal under non-isothermal conditions in electrothermal atomic absorption spectrometry is presented. A comparison is made with other methods using the same experimental data sets for Cu, Ni, and Au. The deviations from linearity of the Arrhenius plots are discussed.  相似文献   

18.
Two Types of Uncertainty in the Values of Activation Energy   总被引:2,自引:0,他引:2  
The activation energies of the same process are often reported to have different values, which are usually explained by the differences in experimental conditions and sample characteristics. In addition to this type of uncertainty, which is associated with the process (ΔE process) there is an uncertainty related to the method of computation of the activation energy (ΔE method). For a method that uses fitting single heating rate data to various reaction models, the value of ΔE method) method is large enough to explain significant differences in the reported values of the activation energy. This uncertainty is significantly reduced by using multiple heating rate isoconversional methods, which may be recommended for obtaining reference values for the activation energy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
20.
A new standardization method has been developed for neutron activation analysis. In this method, experimental activation constants, are determined for a given reactor power level and irradiation and counting position. The unusual feature of this technique is the fact that no flux monitor or standards are needed due to the exceptional stability of the reactor used. The semi-absolute method was tested over a three month period and its reliability was demonstrated for 6 elements of different neutrons cross-section characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号