首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The electrochemical behavior of the ofloxacin–copper complex, Cu(II)L2, at a mercury electrode, and the interaction of DNA with the complex have been investigated. The experiments indicate that the electrode reaction of Cu(II)L2 is an irreversible surface electrochemical reaction and that the reactant is of adsorbed character. In the presence of DNA, the formation of the electrochemically non-active complexes Cu(II)L2-DNA, results in the decrease of the peak current of Cu(II)L2. Based on the electrochemical behavior of the Cu(II)L2 with DNA, binding by electrostatic interaction is suggested and a new method for determining nucleic acid is proposed. Under the optimum conditions, the decrease of the peak current is in proportional to the concentration of nucleic acids in the range from 3 × 10−8 to 3 × 10−6 g · mL−1 for calf thymus DNA, from 1.6 × 10−8 to 9.0 × 10−7 g · mL−1 for fish sperm DNA, and from 3.3 × 10−8 to 5.5 × 10−7 g · mL−1 for yeast RNA. The detection limits are 3.3 × 10−9, 6.7 × 10−9 and 8.0 × 10−9 g · mL−1, respectively. The method exhibits good recovery and high sensitivity in synthetic samples and in real samples.  相似文献   

2.
 Two new simple and rapid methods are reported for the accurate and precise spectrophotometric determination of captopril (CPL) using flow (FI) and sequential injection (SI) analysis. The methods are based on the fast oxidation of CPL by Fe(III). The produced Fe(II) reacts with 2,2′-dipyridyl-2-pyridylhydrazone (DPPH) in acidic medium to form a colored complex which is monitored spectrophotometrically at 535 nm. Both methods allow the determination of the analyte up to 1000 mg L−1 at a sampling rate of 120 and 60 injections per hour for FI and SI, respectively. The methods are very precise [s r=0.8 and 1.2% at 500 mg L−1 CPL (n=12) for FI and SI, respectively] and the 3σ detection limits (c L=4.0 and 7.0 mg L1, respectively) are quite satisfactory. Their application to a variety of anti-hypertensive commercial pharmaceutical formulations showed excellent results (relative errors, e r, < ± 1.6% in all cases compared to an official HPLC method), while common pharmaceutical excipients were found not to interfere. Recovery experiments further verified the accuracy of the developed methods, as the percent recoveries were in the range of 98.1–102.5%. Author for correspondence. E-mail: themelis@chem.auth.gr Received May 9, 2002; accepted January 8, 2003 Published online May 5, 2003  相似文献   

3.
A catalytic adsorptive stripping voltammetric method for the determination of copper(II) on a carbon paste electrode (PCE) in an alizarin red S (ARS)-K2S2O8 system is proposed. In this method, copper(II) is effectively enriched by both the formation and adsorption of a copper(II)-ARS complex on the PCE, and is determined by catalytic stripping voltammetry. The catalytic enhancement of the cathodic stripping current of the Cu(II) in the complex results from a redox cycle consisting of electrochemical reduction of Cu(II) ion in the complex and subsequent chemical oxidation of the Cu(II) reduction product by persulfate, which reduces the contamination of the working electrode from Cu deposition and also improves analytical sensitivity. In Britton-Robinson buffer (pH 4.56±0.1) containing 3.6×10−5 mol L−1 ARS and 1.6×10−3 mol L−1 K2S2O8, with 180 s of accumulation at −0.2 V, the second-order derivative peak current of the catalytic stripping wave was proportional to the copper(II) concentration in the range of 8.0×10−10 to ∼3.0×10−8 mol L−1. The detection limit was 1.6×10−10 mol L−1. The proposed method was evaluated by analyzing copper in water and soil.  相似文献   

4.
An anodic stripping voltammetric procedure for the determination of Cu(II) at an in situ-plated stannum film electrode (SnFE) was described. The results indicated that the SnFE had an attractive electroanalytical performance, with two distinct voltammetric stripping signals for copper and stannum, and showed the superior advantage for the determination of copper compared with the bismuth film electrode. Several experimental parameters were optimized. The SnFE exhibited highly linear behavior in the concentration range from 1.0 to 100.0 μg L−1 of Cu(II) (r = 0.994) with the detection limit of 0.61 μg L−1 (S/N = 3), and the relative standard deviation for a solution containing 40.0 μg L−1 Cu(II) was 2.2% (n = 8). The procedure has been successfully applied for the determination of Cu(II) in lake water sample.  相似文献   

5.
Summary A capillary electrophoretic method for the determination of Cu(II) and Co(III) chelates with ethylenediamine in electroless copper plating baths has been developed. The influence of carrier electrolyte parameters such as nature of counter-ion and pH were studied and discussed. The optimised separations were carried out in a fused silica capillary (57 cm × 75 μm I.D.) filled with an ethylenediamine sulfate electrolyte (20 mol L−1 ethylendiamine, pH7.0 with H2SO4; applied voltage, +25 kV) using direct UV detection at 214 nm. The detection limits for a signalto-noise ratio of 3 and 10s hydrodynamic injection were 5×10−6 mol L−1 for Cu(II) and 1×10−6 mol L−1 for Co(III). The relative standard deviations of the peak areas for Cu(II) and Co(III) were found to be 1.5% and 2.4%, respectively, with five consecutive injections of standard solution containing 5×10−5 mol L−1 of each metal ion. Application of the method to the speciation of Cu(II) and Co(III) complexes in copper plating bath samples is also demonstrated.  相似文献   

6.
This study describes the design and optimisation of a field flow system for the in-situ collection and on-line determination of phosphate, nitrate and nitrite by flow injection analysis-spectrophotometry. The method is based on the initial determination of phosphate as its phosphoantimonylmolybdenum blue complex which is then oxidized on-line by nitrite and the decrease in absorbance is monitored at 880 nm. Nitrate is determined as the difference between total and initial nitrite content in a separate flow after reduction to nitrite in a cadmium reductive column. The calibration curves were linear in the range 0–2.00 mg L−1 P-phosphate, 0–10.00 mg L−1 nitrite and 0–7.00 mg L−1 nitrate with correlation coefficients of 0.9979, 0.9993 and 0.9995, respectively. The detection limits, calculated as 3S/N, were 0.15 mg L−1 for P-phosphate, 0.17 mg L−1 for nitrite and 0.09 mg L−1 for nitrate. The reproducibility was below 3.0% (n = 7). Method validation in the analysis of natural water and wastewater samples revealed that it can efficiently be applied to the determination of the target analytes, with recoveries in the range of 92–108%. Correspondence: Athanasios G. Vlessidis, Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece  相似文献   

7.
Ethylene glycol monobutyl ether (EGBE), an industrial solvent, is absorbed by the body not only by inhalation but also by dermal absorption (liquid or vapour). EGBE is metabolized to butoxyacetic acid (BAA). Pooled freeze-dried urine candidate reference material (RM) was prepared from urine obtained from persons occupationally exposed to EGBE. This material has the advantage of containing butoxyacetic acid in both the free and conjugated (glutamine and glycine) forms, as found in native urine. In all GC method modifications used, acid hydrolysis was used to release BAA from its conjugated form. The amount of butoxyacetic acid in homogeneity and stability testing was measured by GC after derivatisation with N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide. Detection was by MS in EI mode, in the authors’ laboratory. For interlaboratory comparison of the reference material GC methods with MS, FID, and ECD were used. Different extraction solvents (dichloromethane–isopropanol 2:1, ethyl acetate, or dichloromethane) and derivatisation reagents (trimethylsilyldiazomethane, N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide) were used. Using ANOVA (at the statistical level α = 0.05) no changes were found in the concentration of butoxyacetic acid during fifteen month isochronous stability testing, or in homogeneity testing. The uncertainty contributions were u h = 8.8 mg L−1 and u s = 6.5 mg L−1. The concentration of butoxyacetic acid in freeze-dried urine RM was evaluated from the results of eight laboratory data sets within an interlaboratory comparison by use of the interactive statistical software IPECA. The contribution to total uncertainty derived from interlaboratory comparison was u i = 12.7 mg L−1. The reference value (c = 273 ± 33 mg L−1) is an unweighted arithmetic average of accepted results. The value is traceable to the pure butoxyacetic acid (98% w/w; Acros Organic #257760010) used as calibrant. The uncertainty given is combined expanded uncertainty derived from the results from interlaboratory comparison, and from homogeneity and stability tests (k = 2). The reference material will be used to verify method performance in the biological monitoring of occupational exposure to EGBE.  相似文献   

8.
A new method allowing the simultaneous determination of arsenic(V), selenium(IV) and selenium(VI) using miniaturised isotachophoresis has been developed. The method uses 0.02 M nitric acid buffered to pH 5.5 with histidine as the leading electrolyte. Using a miniaturised poly(methyl methacrylate) chip device with an integrated conductivity detector, separations of model samples and an industrial process stream sample were achieved. Limits of detection were calculated to be 0.85 mg L−1 for arsenic(V), 0.95 mg L−1 for selenium(IV) and 1.0 mg L−1 for selenium(VI). A method for the analysis of arsenic(III), using a glycolic acid based leading electrolyte to eliminate carbonate interference is also presented.  相似文献   

9.
The complexation process of the transition metal Cu(II) with quercetin was studied. The investigation was conducted spectrophotometrically in ethanol at the maximum absorption wavelength of 458.5 nm. Cu(II)—quercetin complex composition (1: 1) was determined using the Job, Harvey—Manning, and mole ratio methods. Complex stability constant was calculated by the Job and mole ratio methods and the respective logarithm values were 7.53 ± 0.25 and 7.44 ± 0.03. A new method for quantitative determination of the quercetin content in solution was developed in this work. At the optimal conditions quercetin was determined in concentrations ranging from 0.202 to 1.006 μg cm−3 with relative standard error of 2.5 % to 5.5 %. The lower detection limit was 0.067 μg cm−3. The method was found very accurate, reproducible, and sensitive, capable to determine microamounts of quercetin in pharmaceutical preparations.  相似文献   

10.
2,5-Dimercapto-1,3,4-thiadiazole (DMTD) self-assembled monolayer on gold electrode was prepared and investigated by electrochemical measurement. The DMTD/Au electrode exhibited a significantly increased sensitivity and selectivity for Pb(II) in acetate buffer (pH 5.5) at a potential of −1.0 V (vs Ag/AgCl) for 4 min by anodic stripping voltammetry. The influence of various experimental parameters on the voltammetric response was studied. Under the optimized working conditions, the dependence of the stripping peak current response on concentration of Pb(II) was linear in the range of 1–45 μmol L−1 with a correlation coefficient of 0.9988, and the detection limit was 0.10 μmol L−1. The relative standard deviation of the results was 3.4% for six successive determinations of a 20 μmol L−1 Pb(II) solution. A study of interfering substances was also performed. The method was applied to the determination of Pb(II) in water samples with satisfactory results. Correspondence: Hong Qun Luo, School of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, China  相似文献   

11.
Pyrene-tetramethylpiperidinyl (Pyr-Tempo) as a spin label fluorescent probe for iron(II) was synthesized. It exhibited weak fluorescence (λexcem = 346/399 nm) in aqueous solution due to an intramolecular quenching pathway. A method for determination of iron(II) was proposed based on the fluorescence enhancement of the probe in the presence of iron(II) in acidic medium. Under optimum conditions, the fluorescence enhancement of Pyr-Tempo is linearly proportional to the iron(II) concentration range of 6.0 × 10−8 to 9.6 × 10−6 mol L−1 with a detection limit of 8.0 × 10−9 mol L−1. The relative standard deviation (RSD) of six replicate measurements is 1.95% for 3.0 × 10−7 mol L−1 iron(II). The developed spin label fluorescence probe is found to be rapidly and sensitively responsive to iron(II) with high selectivity compared to existing fluorescence methods. The proposed method was successfully applied to iron(II) detection in five real samples with satisfactory results obtained by manual UV/Vis spectrophotometry (standard method) with 1,10-phenanthroline.  相似文献   

12.
 A new sensitive method exploiting solid-phase spectrophotometry is proposed for the determination of cobalt in pharmaceutical preparations. The chromogenic reagent 1-(2-thiazolylazo)-2-naphthol (TAN) was immobilized on C18 bonded silica loaded into a home-made cell with 1.5 mm of optical path for cobalt determination. Cobalt(II) reacts with TAN on C18 material, at pH 6.0–7.5, to give a coloured complex which has maximum absorption at 572 nm. In this way, the sample was passed through the cell and Co(II) ions were quantitatively retained on the solid-phase. After the direct measurement of light-absorption in the solid phase, only the cobalt was eluted with 0.1 mol L−1 hydrochloric acid. The cell was washed with water and then another sample solution could be passed through the cell. The procedure allowed the determination of cobalt in the range of 10–160 μg L−1 with coefficient of variation of 4.7% (n=10) and apparent molar absorptivity of 2.62 × 106 L mol−1 cm−1 using sample volume of 3-mL. Received May 15, 2000. Revision August 28, 2000.  相似文献   

13.
Poly(phenol red) (denoted as PPR) films were electrochemically synthesized on the surface of a glassy carbon electrode (GCE) by cyclic voltammetry to obtain a chemically modified electrode (denoted as PPR-GCE). The growth mechanism of PPR films was studied by attenuated total reflection spectroscopy. This PPR-GCE was used to develop a novel and reliable method for the determination of trace Pb2+ by anodic stripping differential pulse voltammetry. At optimum conditions, the anodic peak exhibits a good linear concentration dependence in the range from 5.0 × 10−9 to 5.0 × 10−7 mol L−1 (r = 0.9989). The detection limit is 2.0 × 10−9 mol L−1 (S/N = 3). The method was employed to determine trace levels of Pb2+ in industrial waste water samples. Correspondence: Gongjun Yang, Ming Shen, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China  相似文献   

14.
Citric acid was thermochemically esterified onto defatted cotton fibre to produce a carboxyl cotton chelator (CCC), which had been used for extraction of copper prior to its determination by flame atomic absorption spectrometry. The extraction of copper has been studied under both batch and column methods. Quantitative extraction of copper was achieved in the pH range 4–7. The time needed to extract each sample was less than 30 min by the batch method. The copper extraction capacity of CCC was found to be 22.7 mg g−1 at optimal pH value. The elution was quantitative with 1 mol L−1 hydrochloric acid. The feasible flow rate of copper-containing solution for quantitative extraction onto the column packed with CCC was 0.5–4.0 mL min−1, whereas for elution it was less than 1.5 mL min−1. A 100-fold extraction factor could be achieved under the optimal column conditions. The tolerance limits for common metal ions on the extraction of copper and the time of column reuse were investigated. The proposed method has been successfully applied for extraction and determination of copper in industrial wastewater and natural water samples.  相似文献   

15.
Determination of the effective components in traditional Chinese medicine is one of the key steps for its identification. In this paper a novel and sensitive chemiluminescence (CL) method for the determination of rhein coupled with flow-injection analysis (FIA) is developed. It is based on the strong sensitizing effect on the weak CL reaction between luminol and ferricyanide in alkaline solution. Under optimal experimental conditions, the relative CL intensity is proportional to the concentration of rhein in the range of 7.0 × 10−12–7.0 × 10−10 mol L−1 and 1.0 × 10−9–4.0 × 10−5 mol L−1, the detection limit is 1.478 × 10−13 mol L−1, and the relative standard deviation (RSD) for 9 parallel measurements of 1.408 × 10−7 mol L−1 rhein is 3.4%. The method was successfully applied to the determination of rhein in pharmaceutical preparations. The possible mechanism of CL is also briefly discussed.  相似文献   

16.
1-Naphthylamine (NPA) is one of the main degradation products of pesticides derived from naphthalene, and a well-known bladder carcinogen in men. The Griess assay is used for NPA determination because of its high sensitivity and selectivity. The azo dye 4-(sulphophenylazo)-1-naphthylamine is formed, which shows a peak maximum at 540 nm. After optimizing multisyringe flow injection analysis (MSFIA) parameters, the analytical characteristics of the method were obtained, with a working linear range of 0.5 to 14 mg L−1, according to the equation A = 0.0738±0.0019 [NPA] + 0.0028 ± 0.0042, r = 0.9997. Values for RSD (%) and Erel (%) were calculated for the concentration levels of 0.5, 6 and 12 mg L−1; values obtained were 1.1, 0.4 and 0.3% for RSD and 0.8, 0.3 and 0.2% for Erel, respectively. LD was 0.01 mg L−1 and LQ was 0.04 mg L−1 NPA. The MSFIA procedure for the determination of NPA was applied to different water samples (well water, tap water, seawater, and wastewater from the EDAR-1, Palma de Mallorca water treatment plant), with satisfactory results and a throughput of 90 samples per hour.  相似文献   

17.
A flow injection chemiluminescence method is proposed for the determination of cobalt, based on the strong catalytic effect of Cobalt(II) (1,10-phenanthroline)3 complex on the lucigenin-periodate reaction in alkaline medium. Under the optimum experimental conditions, the chemiluminescence signal responded linearly to the concentration of cobalt(II) in the 1.0 × 10−9–3.0 × 10−7 g mL−1 range with a detection limit of 4.4 × 10−10 g mL−1 cobalt(II). The relative standard deviation for the determination of 5.0 × 10−8 g mL−1 of cobalt was 2.3% in eleven replicated measurements. The method was successfully applied to the determination of cobalt(II) in pharmaceutical preparations.  相似文献   

18.
 In this work it was established that, in the presence of ammonium carbonate, traces of manganese(II) catalyse the oxidation of Nile Blue A by hydrogen peroxide, which enables its kinetic determination in the concentration range from 6.6 to 65.9 ng cm−3, the detection limit being 8.0 × 10−2 ng cm−3. Antiviral/antitumour substances modify the catalytic activity of manganese(II): 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide, ribavirin, increases the catalytic effect of manganese(II), while 2-β-D-ribofuranosyl-thiazole-4-carboxamide, tiazofurin, acts as an inhibitor. On the basis of these effects, a kinetic method for determining ribavirin concentrations from 0.5 × 10−1 to 4.0 × 10−1 μg cm−3 and tiazofurin concentrations from 0.3 to 2.6 μg cm−3 is proposed. The kinetics of the indicator reaction were studied in the presence of the substances examined, the kinetic equations established, and the constants of the corresponding reaction rates calculated. The effect of temperature on these reactions was also investigated. The method was applied to the determination of manganese(II) in mineral water and ribavirin in pharmaceutical preparations. Received December 16, 1999. Revision June 6, 2000.  相似文献   

19.
A series of trinuclear Cu(II) complexes have been prepared by Schiff base condensation of 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-l,4,8,11-tetraazacyclotetradecane and 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-l,4,8,11-tetraazacyclotetradecane with aromatic and aliphatic diamines, Cu(II) perchlorate and triethylamine. The complexes were characterized by elemental and spectroscopic analysis. Electrochemical studies of the complexes in DMF solution show three irreversible one-electron reduction processes around Epc 1 = −0.73 to −0.98 V, Epc 2 = −0.91 to −1.20 V and Epc 3 = −1.21 to −1.33 V. ESR spectra and magnetic moments of the trinuclear Cu(II) complexes show the presence of antiferromagnetic coupling. The rate constants for hydrolysis of 4-nitrophenylphosphate by the Cu(II) complexes are in the range of 3.33 × 10−2 to 7.58 × 10−2 min−1. The rate constants for the catecholase activity of the complexes fall in the range of 2.67 × 10−2 to 7.56 × 10−2 min−1. All the complexes were screened for antifungal and antibacterial activity.  相似文献   

20.
Two new Cu(II) complexes, [Cu(L1)2] (1) and [Cu(L2)2] (2) (HL1 = (E)-3-bromo-5-chloro-2-hydroxy benzaldehyde O-methyl oxime; HL2 = (E)-3-bromo-5-chloro-2-hydroxy benzaldehyde O-ethyl oxime), have been synthesized and characterized by physicochemical and spectroscopic methods. X-ray crystallographic analyses show that complexes 1 and 2 have similar structures, consisting of one Cu(II) atom and two L units. In both complexes, the Cu(II) atom, lying on an inversion center, is four-coordinated in a trans-CuN2O2 square-planar geometry by two phenolate O and two oxime N atoms from two symmetry-related N,O-bidentate oxime ligands. Moreover, both complexes form an infinite three-dimensional supramolecular structure involving intermolecular C–H···Br hydrogen bonds and π···π stacking interactions between the metal chelate rings and aromatic rings. Substituent effects in the two complexes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号