首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 363 毫秒
1.
3-Methyl-5-nitrobenzofuran ( 2 ) and 3-methyl-5-nitrobenzofuran-2-carboxylic acid ( 3 ) were obtained by heating 2-acetyl-4-nitrophenoxyacetic acid ( 1 ) with various bases in acetic anhydride. It appeared that 3-hydroxy-3-methyl-5-nitro-2,3-dihydrobenzofuran-2-carboxylic acid ( 4 ) was the intermediate in the benzofuran synthesis. The properties of 4 were examined under various conditions. Using strong bases such as triethyl-amine in place of sodium acetate, 3-methyl-5-nitrobenzofuran-2-carboxylic acid ( 3 ) was obtained exclusively. However, in the presence of acetic acid in the reaction mixture 3-methyl-5-nitrobenzofuran ( 2 ) was obtained in good yield. The reaction pathways for the formation of 2 and 3 are discussed.  相似文献   

2.
The regiospecific reaction of 5-vinyl-3′,5′-di-O-acetyl-2′-deoxyuridine ( 2 ) with HOX (X = Cl, Br, I) yielded the corresponding 5-(1-hydroxy-2-haloethyl)-3′,5′-di-O-acetyl-2′-deoxyuridines 3a-c . Alternatively, reaction of 2 with iodine monochloride in aqueous acetonitrile also afforded 5-(1-hydroxy-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3c ). Treatment of 5-(1-hydroxy-2-chloroethyl)- ( 3a ) and 5-(1-hydroxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3b ) with DAST (Et2NSF3) in methylene chloride at -40° gave the respective 5-(1-fluoro-2-chloroethyl)- ( 6a , 74%) and 5-(1-fluoro-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6b , 65%). In contrast, 5-(1-fluoro-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6e ) could not be isolated due to its facile reaction with methanol, ethanol or water to yield the corresponding 5-(1-methoxy-2-iodoethyl)- ( 6c ), 5-(1-ethoxy-2-iodoethyl)- ( 6d ) and 5-(1-hydroxy-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3c ). Treatment of 5-(1-hydroxy-2-chloroethyl)- ( 3a ) and 5-(1-hydroxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3b ) with thionyl chloride yielded the respective 5-(1,2-dichloroethyl)- ( 6f , 85%) and 5-(1-chloro-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6g , 50%), whereas a similar reaction employing the 5-(1-hydroxy-2-iodoethyl)- compound 3c afforded 5-(1-methoxy-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6c ), possibly via the unstable 5-(1-chloro-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine intermediate 6h . The 5-(1-bromo-2-chloroethyl)- ( 6i ) and 5-(1,2-dibromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6j ) could not be isolated due to their facile conversion to the corresponding 5-(1-ethoxy-2-chloroethyl)- ( 6k ) and 5-(1-ethoxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 61 ). Reaction of 5-(1-hydroxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3b ) with methanolic ammonia, to remove the 3′,5′-di-O-acetyl groups, gave 2,3-dihydro-3-hydroxy-5-(2′-deoxy-β-D-ribofuranosyl)-furano[2,3-d]pyrimidine-6(5H)-one ( 8 ). In contrast, a similar reaction of 5-(1-fluoro-2-chloroethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6a ) yielded (E)-5-(2-chlorovinyl)-2′-deoxyuridine ( 1b , 23%) and 5-(2′-deoxy-β-D-ribofuranosyl)furano[2,3-d]pyrimidin-6(5H)-one ( 9 , 13%). The mechanisms of the substitution and elimination reactions observed for these 5-(1,2-dihaloethyl)-3′,5′-di-O-acetyl-2′-deoxyuridines are described.  相似文献   

3.
Condensation of 3,4-dichloro-6-[(trimethylsilyl)oxy] pyridazine ( 3 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β- D -ribofuranose ( 4 ), by the stannic chloride catalyzed procedure, has furnished 3,4-dichloro-1-(2,3,5-tri-O-benzoyl-β- D -ribofuranosyl) pyridazin-6-one ( 5 ). Nucleophilic displacement of the chloro groups and removal of the benzoyl blocking groups from 5 has furnished 3-chloro-4-methoxy-, 3,4-dimethoxy-, 4-amino-3-chloro-, 3-chloro-4-methylamino-, 3-chloro-4-hydroxy-, and 4-hydroxy-3-methoxy-1-β- D -ribofuranosylpyridazin-6-one. An unusual reaction of 5 with dimethylamine is reported. Condensation of 4,5-dichloro-3-nitro-6-[(trimethylsilyl)oxy]pyridazine with 4 yielded 4,5-dichloro-3-nitro-1-(2,3,5-tri-O-benzoyl-β- D -ribofuranosyl)pyridazin-6-one ( 24 ). Nucleophilic displacement of the aromatic nitro groups from 24 is discussed. Condensation of 3 with 3,5-di-O-p-toluoyl 2-deoxy- D -erythro-pentofuranosyl chloride ( 28 ) afforded an α, β mixture of 2-deoxy nucleosides. The synthesis of certain 3-substituted pyridazine 2′-deoxy necleosides are reported.  相似文献   

4.
The reaction of 3-acetyl-6,6-dimethyltetrahydrothiopyran-2,4-dione with diazomethane furnishes a mixture of 3-acetyl-6,6-dimethyl-4-methoxy-5,6-dihydro-2H-thiopyran-2-one and 3-acetyl-6,6-dimethyl- 2-methoxy-5,6-dihydro-2H-thiopyran-4-one in 2:3 ratio, whereas in reaction with dimethyl sulfate in the presence of potassium carbonate forms a mixture of the same products in 9:1 ratio. In both reactions the overall yield of ethers amounts to 50%. Treating of regioisomeric enol methyl ethers with pyrrolidine, o-toluidine, and allylamine provides the corresponding endocyclic enaminodiketones.  相似文献   

5.
A new seven step synthesis of methoxalen, 9-methoxy-7H-furo[3,2-g][1]benzopyran-7-one, starting from 2-chloro-2′-hydroxy-3′,4′-dimethoxyacetophenone is described. The yields in every step are good (60-100%).  相似文献   

6.
The triethylamine-catalyzed reaction of 4-substituted ethyl 2-acyl-3-amino-6-methylthieno[2,3-b]pyridine-4-carboxylates IIIa-h with 2,2,6-trimethyl-4H-1,3-dioxin-4-one IV gave 4-substituted ethyl 3-acetyl-2-hydroxy-7-methylthieno[2,3-b:4,5-b′]dipyridine-9-carboxylates Va-h. Some of the thienodipyridines ( V ) reacted with excess IV to give 5-substituted ethyl 3-acetyl-4,8-dimethyl-2-oxo-2H-pyrano[2,3-b]-pyrido[3′,2′:4,5]thieno[2,3-e]pyridine-10-carboxylates VI .  相似文献   

7.
Treatment of 2,3-dichloroquinoxalines with 2-amino-6-picoline-3-thiol gave a mixture of 2,3-bis(2-amino-6-picolinyl-3-thio)quinoxalines ( 16 , R = H, CI) and 2,3-bis (N,N-dimethylamino)quinoxalines ( 15 , R = H, CI) separated by fractional crystallization. A similar reaction of 3-amino-6-methoxypyridine-2(1H)-thione ( 9 ) with 4,5-dichloropyridazin-3(2H)-one ( 21 ) gave 4-chloro-5-(3-amino-6-methoxypyridyl-2-thio)pyridazin-3(2H)-one ( 22 ). Concentrated hydrochloric acid-catalysed cyclization of 22 gave the non-rearranged 7-methoxy-2,3,6-triazaphenothiazin-1(2H)-one. The action of compound 22 in refluxing glacial acetic acid gave, on the other hand, 7-methoxy-2,3,6-triazaphenothiazin-4(3H)-one via a Smiles rearrangement. These cyclized compounds are the first known derivatives of the new 2,3,6-triazaphenothiazine ring system.  相似文献   

8.
The reaction of 6-chloro-2-hydrazinoquinoxaline 4-oxide 5 with triethyl orthoformate gave 7-chloro-1,2,4-triazolo[4,3-a]quinoxaline 5-oxide 6. The reaction of compound 6 with phenyl isocyanate afforded 7-chloro-4-phenylamino-1,2,4-triazolo[4,3-a]quinoxaline 7 , while the reaction of compound 6 with phenyl isothiocyanate resulted in deoxygenation to provide 7-chloro-1,2,4-triazolo[4,3-a]quinoxaline 8. However, the reaction of compound 6 with allyl isothiocyanate effected the 1,3-dipolar cycloaddition reaction, but not deoxygenation, to furnish 9-chloro-4,5-dihydroisoxazolo[2,3-a][1,2,4]triazolo[3,4-c]quinoxalin-5-ylmethylisothiocyanate 9. Moreover, the reduction of compound 9 with iron/acetic acid resulted in ring transformation to give 11 -chloro-7-hydroxy-4-thioxo-4,5,6,7,8,9-hexahydro-1,2,4-triazolo[4,3,2- o,p][1,3]diazocino[4,5-b]quinoxaline 10 , whose acetylation afforded 5-acetyl-11-chloro-7-hydroxy-4-thioxo-4,5,6,7,8,9-hexahydro-1,2,4-triazolo[4,3,2-o,p][1,3]diazocino[4,5-b]quinoxaline 11.  相似文献   

9.
The treatment of 4-chloro-7-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine ( 4 ) with N-bromoacetamide in methylene chloride has furnished the 5-bromo derivative of 4 which on subsequent deacetylation provided a good yield of 5-bromo-4-chloro-7-(β-D-ribo-furanosyl)pyrrolo[2,3-d] pyrimidine ( 6 ). Assignment of the halogen substituent to position 5 was made on the basis of pmr studies. Treatment of 6 with methanolic ammonia afforded 4-amino-5-bromo-7-(β-D-ribofuranosyl)pyrrolo[2,3-d ]pyrimidine ( 8 , 5-bromotubercidin) and a subsequent study has revealed that the 4-chloro group of 6 was replaced preferentially in a series of nucleophilic displacement reactions. The analogous synthesis of 4,5-dichloro-7-(β-D-ribo-furanosyl)pyrrolo[2,3-d]pyrimidine ( 13b ) and 4-chloro-5-iodo-7-(β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine ( 13a ) from 4 furnished 5-chlorotubercidin ( 15 ) and 5-iodotubercidin ( 14 ), respectively, on treatment of 13b and 13a with methanolic ammonia. The possible biochemical significance of these tubercidin derivatives is discussed.  相似文献   

10.
2,3-Diphenyl-5-formyl-6-methoxybenzofuran was reacted with hippuric acid to give 4-[(2′,3′-diphenyl-6′-methoxy-5′-benzofuranyl)methylene]-2-phenyloxazolin-5-one. The above mentioned oxazolone yielded 2,3-diphenyl-6-methoxybenzofuranylacetic acid by reaction with hydrazine hydrate, nitrous acid, benzene followed by acid hydrolysis. The reactions of the oxazolone with hydroxylamine hydrochloride and primary or secondary amines were also investigated.  相似文献   

11.
TMSOTf-mediated reactions of 2-aryl-1-(1-phenylcyclopropyl)ethanones 1 with allenic esters afford a novel method for the synthesis of 6-methyl-3a,7-diaryl-3,3a-dihydro-2H-benzofuran-4-one derivatives 2 in moderate yields. In addition, we also found that TMSOTf-mediated reactions of 1-cyclopropyl-2-arylethanones with ethyl acetoacetate can provide the corresponding 2,3-dihydrobenzofuran-4-ol and dihydrofuro[2,3-h]chromen-2-one in moderate yields via a sequential reaction involving a nucleophilic ring-opening reaction of the cyclopropane by H2O, one intermolecular aldol type reaction and two intramolecular aldol type reactions, a cyclic transesterification, dehydration, and aromatization. Moreover, by using methyl acrylate to replace allenic ester, the corresponding 7-aryl-3,5,6,7-tetrahydro-2H-benzofuran-4-one and 5-aryl-3,5,6,7-tetrahydro-2 H-benzofuran-4-one can be formed in moderate to high yields in the presence of Bi(OTf)2Cl. Plausible reaction mechanisms have also been provided on the basis of control experiments.  相似文献   

12.
2-Amino-6,7-dihydrothieno[3′,2′:5,6]pyrido[2,3-rf]pyrimidin-4-one ( 1 ) was prepared in three steps from S-(3-butynyl)thiosemicarbazide hydroiodide ( 3 ) and diethyl ketomalonate. The featured step in this synthetic sequence was an intramolecular Diels-Alder reaction of the in situ generated 3-(3-butynylthio)-6-carboethoxy-5-chloro-1,2,4-triazine ( 9 ) to provide the key intermediate 5-carboethoxy-6-chloro-2,3-dihydrothieno-[2,3-b]pyridine ( 6 ). In the course of studies directed toward the preparation of 1 , thermolysis of 3-(3-butynyl-thio)-6-carboethoxy-1,2,4-triazin-5(2H)-one ( 2 ) was found to involve competitive intramolecular Diels-Alder and intramolecular coplanar cycloamination processes, providing the 2,3-dihydrothieno[2,3-b]pyridin-6(7H)-one ( 4 ) and the 1,3-thiazino[3,2-b]-1,2,4-triazin-3-one (5) derivatives, respectively.  相似文献   

13.
Treatment of 7-chloro-3,4-dihydro-1H-1,4-benzodiazepin-2,5-dione (Ia) with refluxing acetic anhydride in the presence of pyridine afforded 6-chloro-2-methyl-4H-3,1-benzoxazin-4-one (IIa). A plausible reaction path for this novel rearrangement reaction is described: Ia → 4-acetyl-7-chloro-3,4-dihydro-lH-1,4-benzodiazepin-2,5-dione → 7-chloro-1,4-diacetyl-3,4-dihydro-lH-1,4-benzodiazepin-2,4-dione → IIa. When 7-chloro-3,4-dihydro-4-methyl-lH-1,4-benzodiazepin-2,5-dione (Ib), 3,4-dihydro-4-methyl-1H-1,4-benzodiazepin-2,5-dione (Id) and 3,4-dihydro-1-methyl-1H-1,4-benzodiazepin-2,5-dione (Ie) were allowed to react with acetic anhydride under conditions similar to those used for the rearrangement reaction, only acetylation occurred.  相似文献   

14.
A reaction of 2,3-dichloro-4,4-ethylenedioxycyclopent-2-en-1-one with MeONa in MeOH to furnish 2-chloro-3-hydroxycyclopent-2-en-1,4-dione has been studied. The latter under the action of CH2N2 has been converted to the corresponding enol ether. This methodology has been used for the synthesis of 4-chloro-5-methoxy-2-cinnamylidenecyclopent-4-en-1,3-diones and related compounds starting from the parent dichlorocyclopentenone.  相似文献   

15.
Cyclization of 2′-benzoyl-4′-chloro-2-[(2-hydroxypropyl)amino]acetanilide (8) and 2′-bcnzoyl-4-ehloro-2-[(3-hydroxypropyl)amino]acetanilide ( 7 ) led to the respective oxazolo (3) and oxazino (5) analogs of 7-chloro-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepin-2-one. Cyclization of 2′-benzoyl-4′-chloro-2-[2,3-dihydroxypropyl)amino]acetanilide ( 9 ) could produce either the oxazolo ( 4 ) or oxazino ( 10 ) analog. Data is presented to show that cyclization occurred to give the oxazolo (4) analog.  相似文献   

16.
7-Chloro-4-hydroxydithiocoumarin was alkylated with allylic halides under phase transfer catalysis condition in the presence of TBAB or BTEAC in chloroform-aqueous NaOH (1%) at room temperature. 2,3-Dichloroprop-2-ene on similar treatment with 7-chloro-4-hydroxydithiocoumarin afforded 2-methylthieno[2,3-b]thiochromen-4-one in 65% yield. The S-alkylated thiochromen-4-ones were then refluxed in quinoline to give 7-chloro-2,3-dihydrothieno[2,3-b]thiochromen-4-ones or 7-chloro-2,3,4-trihydrothiopyrano[2,3-b]thiochromen-5-ones or 7-chloro-2,3-dihydro-3-vinylthieno[2,3-b]thiochromen-4-one.  相似文献   

17.
3-Acetyltropolone ( 1 ) reacted with phenylhydrazine to give 3-acetyltropolone phenylhydrazone ( 3 ) and 3-methyl-1-phenyl-1,8-dihydrocycloheptapyrazol-8-one ( 4 ). The former ( 3 ) cyclized to afford the latter ( 4 ). The reaction of 3-acetyl-2-methoxytropone ( 2a ) with phenylhydrazine gave 4 , 3-methyl-2-phenyl-2,8-dihydrocyclo-heptapyrazol-8-one ( 5 ), and 3-methyl-2-phenyl-2,8-dihydrocycloheptapyrazol-8-one phenylhydrazone ( 6 ). The compound ( 5 ) reacted with phenylhydrazine to afford 6 . The reaction of 7-acetyl-2-methoxytropone ( 2b ) with phenylhydrazone gave 7-acetyl-2-methoxytropone phenylhydrazone ( 7 ), 7-acetyl-2-(N′-phenylhydrazino)-tropone phenylhydrazone ( 8 ), 3-methyl-1-phenyl-1,8-dihydrocycloheptapyrazol-8-one phenylhydrazone ( 9 ), and 6 . The compound ( 7 ) was heated to afford 4 and reacted with phenylhydrazine to afford 8 and 9 . The compound ( 8 ) was also refluxed to give 9 .  相似文献   

18.
The preparation of 1,4-dihydro-4-oxo-3′-alkylthio-3,4′-diquinolinyl sulfides 3 or 1,4-dihydro-4-oxo-3-(alkylthio)quinolines 4 by acid catalysed hydrolysis of 4-methoxy-3′-alkylthio-3,4′-diquinolinyl sulfides 1 or 4-methoxy-3-(alkylthio)-quinolines 2 is described. The reactions of 4-methoxy-3′-alkylthio-3,4′-diquinolinyl sulfides 1 or 1,4-dihydro-4-oxo-3′-alkylthio-3,4′-diquinolinyl sulfides 3 with phosphoryl chloride in DMF afforded 4-chloro-3′-alkylthio-3,4′-diquinolinyl sulfides 5 . Treatment of the title compounds 1 or 3 with boiling phosphoryl chloride systems:leads to 4-chloro-3-(alkylthio)quinolines 6 and thioquinanthrene but those of alkoxy- or oxo-quinolines 2 or 4 lead to 4-chloro-3-(alkylthio)quinolines 6 . The reactions of N-methyl-4(1H)-quinolinones 3n and 4n with phosphoryl chloride directed to 4-chloro-3-(alkylthio)quinolines 6 were studied as well.  相似文献   

19.
The synthesis and characterization of previously unknown sulfur-containing products from the reaction of mucochloric acid (3,4-dichloro-5-hydroxy-2(5H)-furanone) and its 5-alkoxy derivatives with 1,2-ethanedithiol is reported. Under basic and acidic conditions both SH-groups of the reagent show nucleophilic activity, leading to the formation of substitution products of different structural types. Novel fused (7-hydroxy-2,3-dihydro[1,4]dithiino[2,3-c]furan-5(7H)-one) and spiro (9-chloro-6-methoxy-7-oxa-1,4-dithiaspiro[4.4]nonan-8-one) bicyclic compounds, as well as various bis-thioethers have been obtained and characterized by NMR spectroscopy and single crystal X-ray diffraction.  相似文献   

20.
On the Synthesis of Sulfonated Derivatives of 2,3-Dimethylaniline and 3,4-Dimethylaniline Baking the hydrogensulfate salt of 2,3-dimethylaniline ( 1 ) or of 3,4-dimethylaniline ( 2 ) led to 4-amino-2,3-dimethylbenzenesulfonic acid ( 4 ) and 2-amino-4,5-dimethylbenzenesulfonic acid ( 5 ), respectively (Scheme 1). The sulfonic acid 5 was also obtained by treatment of 2 with sulfuric acid or by reaction of 2 with amidosulfuric acid. 3-Amino-4,5-dimethylbenzenesulfonic acid ( 3 ) and 5-Amino-2,3-dimethylbenzenesulfonic acid ( 6 ) were prepared by sulfonation of 1,2-dimethyl-3-nitrobenzene ( 9 ) to 3,4-dimethyl-5-nitrobenzenesulfonic acid ( 11 ) and of 1,2-dimethyl-4-nitrobenzene ( 10 ) to 2,3-dimethyl-5-nitrobenzenesulfonic acid ( 12 ), respectively, with subsequent Béchamp reduction (Scheme 1). Preparations of 2-amino-3,4-dimethylbenzenesulfonic acid ( 7 ) and of 6-amino-2,3-dimethylbenzenesulfonic acid ( 8 ) were achieved by the sulfur dioxide treatment of the diazonium chlorides derived from 3,4-dimethyl-2-nitroaniline ( 24 ) and from 2,3-dimethyl-6-nitroaniline ( 31 ) to 3,4-dimethyl-2-nitrobenzenesulfonyl chloride ( 29 ) and 2,3-dimethyl-6-nitrobenzenesulfonyl chloride ( 32 ), respectively, followed by hydrolysis to 3,4-dimethyl-2-nitrobenzenesulfonic acid ( 30 ) and 2,3-dimethyl-6-nitrobenzenesulfonic acid ( 33 ), and final reduction (Scheme 3). Compound 7 was also synthesized by reaction of 4-chloro-2,3-dimethylaniline ( 23 ) with amidosulfuric acid to 2-amino-5-chloro-3,4-dimethylbenzenesulfonic acid ( 20 ) and subsequent hydrogenolysis (Scheme 2). 4′-Bromo-2′, 3′-dimethyl-acetanilide ( 13 ) and 4′-chloro-2′, 3′-dimethyl-acetanilide ( 14 ) on treatment with oleum yielded 5-acetylamino-2-bromo-3,4-dimethylbenzenesulfonic acid ( 17 ) and 5-acetylamino-2-chloro-3,4-dimethylbenzenesulfonic acid ( 18 ), respectively. Their structures were proven by hydrolysis to 5-amino-2-bromo-3,4-dimethylbenzenesulfonic acid ( 21 ) and 5-amino-2-chloro-3,4-dimethylbenzenesulfonic acid ( 22 ), followed by reductive dehalogenation to 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号