首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 176 毫秒
1.
2.
3.
黄强  尹沛源  路鑫  孔宏伟  许国旺 《色谱》2009,27(5):566-572
代谢组学是对生物体受外部刺激所产生的小分子代谢产物的变化或其随时间的变化进行研究的一门学科,以实现对体液、细胞以及组织提取物等复杂的生物样本中所有代谢产物的定性和定量分析为研究目标。色谱-质谱联用技术在代谢组学的研究中已显示出极大的发展潜力。本文主要综述近年来代谢组学研究中涉及的色谱-质谱联用技术及其数据处理方法,重点介绍各种分离技术的特点及其在应用中的关键问题,并对其在代谢组学应用中的未来发展给予展望。  相似文献   

4.
Shen Y  Smith RD 《Electrophoresis》2002,23(18):3106-3124
Identifying and quantifying in a high throughput manner the proteins expressed by cells, tissues or an organism provides the basis for understanding the functions of its constituents at a "systems" level. As a result, proteome analysis has increasingly become the focus of significant interest and research over the past decade. This is especially true following the recent stunning achievements in genomics analyses. However, unlike the static genome, the complexities and dynamism of the proteome present significant analytical challenges and demand highly efficient separations and detection technologies. A number of recent technological advancements have been in direct response to these challenges. Currently, strategically mated combinations of sophisticated separations techniques and advanced mass spectrometric detection represent the best approach to addressing the intricacies of the proteome. Liquid-phase separations, often within capillaries, are increasingly recognized as the best separations technique for this approach. In combination on-line with mass spectrometry, liquid-phase separations provide the improved analytical sensitivity, sample throughput, and quantitation capabilities necessitated by the multifaceted problems within proteomics analyses. This review focuses primarily on current high-efficiency capillary separations techniques, including both capillary liquid chromatography and capillary electrophoresis, applied to the analysis of complex proteomic samples. We emphasize developments at our laboratory and illustrate technical advances that attempt to review the role of separations within the broader context of a state-of-the-art integrated proteomics effort.  相似文献   

5.
In this article we discuss current trends in the techniques available for plant metabolomics. Chemical assignment of unknown metabolites leads to understanding of biosynthetic mechanisms at the gene level for genome-sequenced plants. Metabolomics using mass spectrometry has achieved innovative results in phytochemical genomics for primary and secondary metabolism in the model plant Arabidopsis thaliana by using publicly and commercially available information and standard compounds. However, finding a consolidated analytical technique for elucidation of structural information (e.g., elemental composition and structure) remains challenging. Recently, hyphenated analytical techniques and computer-assisted structural analysis with high-throughput and high-accuracy have been developing. Metabolite-driven approaches using such technology will be of central importance in phytochemical genomics.  相似文献   

6.
The Orbitrap mass analyzer has become a mainstream mass spectrometry technique. In addition to providing a brief introduction to the Orbitrap technology and its continuing development, this article reviews the most recent publications quoting the use of the Orbitrap detection for a variety of chromatographic separation techniques. Its coupling to reversed-phase liquid chromatography (LC) represents undoubtedly the most ubiquitous approach to both small molecule and proteomic analyses. Multi-dimensional LC separations have an important role to play in the proteomics applications while an ultra-high-pressure LC is more frequently encountered in the area of metabolomics and metabolite analysis. Recently, special chromatographic techniques such as hydrophilic interaction chromatography and its variations have also been also cited with the Orbitrap detection.  相似文献   

7.
From proteomics to genomics   总被引:7,自引:0,他引:7  
Sperling K 《Electrophoresis》2001,22(14):2835-2837
Presently, science is moving from genomics to proteomics in order to get insight into the functional network of gene expression. Actually however, proteomics is much older than genomics and dates back to the introduction of the two-dimensional gel electrophoresis technique (2-DE) independently by Klose and O'Farrell. Based on this approach almost all cellular proteins can be separated. New developments in mass spectrometry allowed identification of single spots in the 2-DE protein pattern, including the underlying genes. Joachim Klose has focused his pioneering 2-DE studies on mouse models with special emphasis on quantitative protein variants. According to him, proteins are living molecules exhibiting a characteristic protein phenotype.  相似文献   

8.
Metabolomics is the comprehensive profiling of the small molecule composition of a biological sample. Since metabolites are often the indirect products of gene expression, this approach is being used to provide new insights into a variety of biological systems (clinical, bioenergy, etc.). A grand challenge for metabolomics is the complexity of the data, which often include many experimental artifacts. This is compounded by the tremendous chemical diversity of metabolites. Identification of each uncharacterized metabolite is in many ways its own puzzle (compared with proteomics, which is based on predictable fragmentation patterns of polypeptides). Therefore, effective data reduction/prioritization strategies are critical for this rapidly developing field. Here we review liquid chromatography electrospray ionization mass spectrometry (LC/MS)-based metabolomics, methods for feature finding/prioritization, approaches for identifying unknown metabolites, and construction of method specific ‘Metabolite Atlases’.  相似文献   

9.
代谢物组学、基因组学、转录组学和蛋白质组学是系统生物学研究的重要组成部分。近年来,在代谢物组学领域,微生物代谢物组学的研究受到人们的重视,成为研究的热点。本文综述了微生物代谢物组学的研究方法,包括样品处理、分析平台、数据处理和生物学解释等,并讨论了微生物代谢物组学在代谢工程方面的应用潜力,以及微生物代谢物组学的研究前景和所面临的挑战。  相似文献   

10.
王献  林树海  蔡宗苇 《中国科学:化学》2014,(5):76-77,726,731
代谢组学是关于生物系统代谢物组成及变化规律的科学,是系统生物学的重要组成部分.质谱技术是目前代谢组学研究中最主要的分析手段之一,广泛应用于代谢组学各个领域.本文阐述了基于质谱技术的代谢组学方法及其应用,重点介绍和评论了近年来我国在该领域取得的进步和成果,并对基于质谱技术的代谢组学研究目前存在的问题及未来的发展进行了分析与展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号