首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was made on the kinetics and mechanism of the reaction in aqueous solutions of 0.10 to 2.0 mol dm?3 alkaline concentrations. The substrates (S) applied were ethane-1,2-diol (ethylene glycol), glycol aldehyde, glycollic acid, and glyoxylic acid. Glycol aldehyde and glyoxylic acid were present in the form of dihydrate. In each case alkoxy anion is the reactive form and the KB constant of deprotonation can be calculated from the kinetic data. A mechanism based on electron abstraction is suggested. Manganate reacts with these substrates much slower than permanganate.  相似文献   

2.
Spectrophotometric method has been used to characterize water‐soluble colloidal manganese dioxide obtained by the redox reaction between sodium thiosulphate and potassium permanganate in neutral aqueous medium which shows a single peak in the visible region with λmax = 425 nm. The kinetics of the oxidation of lactic acid by colloidal manganese dioxide (oxidant) has been investigated spectrophotometrically under pseudo‐first‐order conditions of excess lactic acid. The rate of the noncatalytic reaction pathway was slow which increased with increasing lactic acid concentration. The reaction was first‐order with respect to [oxidant] as well as [lactic acid]. In presence of manganase(II) and fluoride ions, the noncatalytic path disappeared completely while the oxidation rate of autocatalytic path increased and decreased, respectively with increasing [Mn(II)] and [F?]. A mechanistic scheme in conformity with the observed kinetics has been proposed with the rate‐law: © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 359–366 2004  相似文献   

3.
The kinetics of ethylene oxidation by air over a supported silver catalyst were investigated in the temperature range 490–620 K. The reaction network was found to be triangular. Under virtually constant oxygen partial pressure (0.2 bar), the following rate relationships, (in mol g?1s?1) were found: (formulae in curved brackets denote partial pressures) where R is expressed in J · mol?1 · K?1. The given rate expressions are discussed in the framework of earlier kinetic investigations.  相似文献   

4.
According to our experiments the bromide ion concentration exhibits in the bromate–ascorbic acid–malonic acid–perchloric acid system three extrema as a function of time. To describe this peculiar phenomenon, the kinetics of four component reactions have been studied separately. The following rate equations were obtained: Bromate–ascorbic acid reaction: Bromate–bromide ion reaction: Bromide–ascorbic acid reaction: Bromine–malonic acid reaction: k4 = 6 × 10?3 s?1, k-4 ≥ 1.7 × 103 s?1, k5 ≥ 1 × 107M?1 · s?1 Taking into account the stoichiometry of the component reactions and using these rate equations, the concentration versus time curves of the composite system were calculated. Although the agreement is not as good as in the case of the component reactions, it is remarkable that this kinetic structure exhibits the three extrema found.  相似文献   

5.
The kinetics of dimethyl sulfoxide (DMSO) oxidation by peroxomonophosphoric acid (PMPA) in aqueous medium at 308 K and I = 0.4 mol/dm3 follow the rate expressions In the pH range from 0 to 2, where k1 and k2 are 5.092 × 10?1 dm3/mol sec and ? 0, respectively; in the pH range from 4 to 7, where k2 = 8.127 × 10?3 and k3 = 2.90 × 10?3 dm3/mol sec; and in the pH range from 10 to 13.6, where k4 ? 0, and k5 = 3.08 × 10?2 dm3/mol sec. The reaction is interpreted in terms of mechanisms involving an electrophilic and a nucleophilic attack of the peroxomonophosphoric acid species, respectively, in acid and alkaline regions, on the sulfur atom of the sulfoxide molecule giving rise to S-type transition states followed by oxygen-oxygen bond fission to form the products.  相似文献   

6.
Dilute mixtures of 4-methyl-l-pentyne have been pyrolyzed in a single-pulse shock tube. The decomposition process involves bond breaking: as well as a molecular reaction: The rate parameters are: The heat of formation of propynyl radical is thus ΔHf300 = 338 kJ mol?1 (80.7 kcal mol?1)˙ This leads to a propynyl resonance energy of 40 kJ mol?1 (9.6 kcal mol?1).  相似文献   

7.
Arrhenius parameters have been measured for the abstraction of hydrogen from the C Si, Ge, and Sn tetramethyls: The rate constants correlate with the proton chemical shift, which is related to a polar effect. In all cases except carbon, a hot-molecule β-fluorine rearrangement-elimination reaction occurs following radical combination: We suggest the occurrence of a radical exchange reaction for the Si, Sn, and Ge systems, with kexchange (CF3 + Sn(Me)4) ~ 107 ml m?1 s?1.  相似文献   

8.
The reaction of atomic hydrogen with isocyanic acid (HNCO) to produce the amidogen radical (NH2) and carbon monoxide, has been studied in shock-heated mixtures of HNCO dilute in argon. Time-histories of the ground-state NH2 radical were measured behind reflected shock waves using cw, narrowlinewidth laser absorption at 597 nm, and HNCO time-histories were measured using infrared emission from the fundamental v2-band of HNCO near 5 μm. The second-order rate coefficient of reaction (2(a)) was determined to be: cm3 mol?1 s?1, where f and F define the lower and upper uncertainty limits, respectively. An upper limit on the rate coefficient of was determined to be:   相似文献   

9.
The synthesis and properties of the ion exchange polymer 3‐n‐propyl(3‐methylpyridinium)silsesquioxane chloride (SiPy+Cl?) are described. Based on the Langmuir model, the equilibrium constant at the solid‐solution interface for the reaction, SiPy+Cl?+NO ?SiPy+NO , was calculated for nitrite adsorption. The value found, β=8.7×103 L mol?1, indicates good affinity of the anion for the solid phase. A carbon paste electrode of the material was tested for NO oxidation and a linear response, in the concentration range between 6.3 and 143.6 μmol L?1, was obtained by amperometry. The analytical applicability of the proposed system was ascertained by the satisfactory results attained in its application to monitoring of nitrite in natural waters.  相似文献   

10.
The energy dependence of the fragmentation of a selection of ester enolate ions has been studied by variable, low-energy collision-induced dissociation experiments in the quadrupole collision cell of a hybrid BEQQ mass spectrometer. The dominant fragmentation reactions observed are where ΔH1 ? ΔH2=PA([RCCO]?) ? PA([?O]?) (PA=proton affinity). The anion of lowest proton affinity is formed preferentially at low internal energies with the yield of the anion of higher proton affinity increasing with increasing internal energy. The [CH3OCOCOCH2]? anion derived from methyl pyruvate forms [CH3OCO]? by reaction (2); this anion readily fragments to [CH3G]?+ CO consistent with a structure represented by a dipole-stabilized cluster of [CH3O]? and CO. Comparison of the 8-keV with the 50-eV collision-induced dissociation mass spectra indicated that the average internal energy of the fragmenting ions is considerably lower in the high-energy collisional experiments than it is in the low-energy collisional experiments.  相似文献   

11.
The thermal decomposition of biacetyl has been studied at small percentage conversion over the temperature range 375-417°C. For these conditions, an almost quantitative mass balance was obtained by gas-chromatographic analysis. The following equation was obtained for the overall reaction Between 240° and 277°C, the decomposition of biacetyl initiated by methyl radicals has also been studied. As source of radicals, the thermolysis of azomethane was used. Moreover, the Arrhenius parameters of the following reactions were determined: where A is in sec?1 for reaction (1) and in cm3mole?1 sec?1 for reactions (3) and (4); E is in kcal/mole. Evidence is provided that the displacement reaction (4) proceeds by a two step mechanism.  相似文献   

12.
The reaction of iodine with allyl alcohol has been studied in a static system, following the absorption of visible light by iodine, in the temperature range 150-190°C and in the pressure range 10-200 torr. The rate-determining step has been found to be and k3 is consistent with the equation From the activation energy and the assumption E-3 = 1 ± 1 kcal mol?1, it has been calculated that kcal mol?1. The stabilization energy of the hydroxyallyl radical has been found to be 11.4 ± 2.2 kcal mol?1.  相似文献   

13.
The rotating-sector method has been applied to the photoinitiated radical-chain decomposition of formamide at 300°C to measure the rate constant for the bimolecular disappearance of NH2 radicals. The decomposition is propagated by the reactions (1) (2) Conditions were chosen so that reaction (1) was rate controlling and NH2 the terminating radical. A flow system was employed with C2F6 as a carrier gas at a pressure of 300 Tort, and the chain reaction was initiated by the photolysis of either formamide or NH3. A value of 4.7(±2.0) × 1010 (M ·sec)?1 was estimated for the termination reaction (3) and a value of 8.4 × 106 (M ·sec)?1 for reaction (1) in the same system, both at 300°C.  相似文献   

14.
The kinetics and mechanism of ascorbic acid (DH2) oxidation have been studied under anaerobic conditions in the presence of Cu2+ ions. At 10?4 ≤ [Cu2+]0 < 10?3M, 10?3 ≤ [DH2]0 < 10?2M, 10?2 ≤ [H2O2] ≤ 0.1M, 3 ≤ pH < 4, the following expression for the initial rate of ascorbic acid oxidation was obtained: where χ2 (25°C) = (6.5 ± 0.6) × 10?3 sec?1. The effective activation energy is E2 = 25 ± 1 kcal/mol. The chain mechanism of the reaction was established by addition of Cu+ acceptors (allyl alcohol and acetonitrile). The rate of the catalytic reaction is related to the rate of Cu+ initiation in the Cu2+ reaction with ascorbic acid by the expression where C is a function of pH and of H2O2 concentration. The rate equation where k1(25°C) = (5.3 ± 1) × 103M?1 sec?1 is true for the steady-state catalytic reaction. The Cu+ ion and a species, which undergoes acid–base and unimolecular conversions at the chain propagation step, are involved in quadratic chain termination. Ethanol and terbutanol do not affect the rate of the chain reaction at concentrations up to ≈0.3M. When the Cu2+–DH2–H2O2 system is irradiated with UV light (λ = 313 nm), the rate of ascorbic acid oxidation increases by the value of the rate of the photochemical reaction in the absence of the catalyst. Hydroxyl radicals are not formed during the interaction of Cu+ with H2O2, and the chain mechanism of catalytic oxidation of ascorbic acid is quantitatively described by the following scheme. Initiation: Propagation: Termination:   相似文献   

15.
A kinetic investigation on the reaction has been carried out in HClO4 medium under different conditions. A spectrophotometric method of estimation of nitrous acid at various time intervals has been employed. The results are interpreted on the basis ofthe following mechanism: The absolute rate constant value of 39.7 M?1 plusmn; s?1 for k4 and the equilibrium constant Keq = 116M?1 for reaction (2) have been evaluated. The activation energy of the overall reaction has also been determined as Ea = 13.2 kcal/mol.  相似文献   

16.
The mechanism of NH3 pyrolysis was investigated over a wide range of conditions behind reflected shock waves. Quantitative time-history measurements of the species NH and NH2 were made using narrow-linewidth laser absorption. These records were used to establish an improved model mechanism for ammonia pyrolysis. The risetime and peak concentrations of NH and NH2 in this experimental database have also been summarized graphically. Rate coefficients for several reactions which influence the NH and NH2 profiles were fitted in the temperature range 2200 K to 2800 K. The reaction and the corresponding best fit rate coefficients are as follows: with a rate coefficient of 4.0 × 1013 exp(?3650/RT) cm3 mol?1 s?1, with a rate coefficient of 1.5 × 1015T?0.5 cm3 mol?1 s?1 and with a rate coefficient of 5.0 × 1013 exp(?10000/RT) cm3 mol?1 s?1. The uncertainty in rate coefficient magnitude in each case is estimated to be ±50%. The temperature dependences of these rate coefficients are based on previous estimates. The experimental data from four earlier measurements of the dissociation reaction were reanalyzed in light of recent data for the rate of NH3 + H → NH21 + H2, and an improved rate coefficient of 2.2 × 1016 exp(?93470/RT) cm3 mol?1 s?1 in the temperature range 1740 to 3300 K was obtained. The uncertainty in the rate coefficient magnitude is estimated to be ± 15%.  相似文献   

17.
The high temperature kinetics of NH in the pyrolysis of isocyanic acid (HNCO) have been studied in reflected shock wave experiments. Time histories of the NH(X3Σ?) radical were measured using a cw, narrow-linewidth laser absorption diagnostic at 336 nm. The second-order rate coefficients of the reactions: (1) were determined to be: cm3?mol?1?s?1, where f and F define the lower and upper uncertainty limits, respectively. The data for k1a are somewhat better fit by:   相似文献   

18.
The electrochemical oxidation of bromide in the presence of ammonium ion (NH ) was studied by cyclic voltammetry and UV‐vis spectroscopy. The experimental results suggested that the anodically generated bromine (Br2) would be hydrolyzed to hypobromous acid (HBrO) at the pH range of 5–7 and was further disproportionate to hypobromite anion (BrO?) when pH was larger than 7. Both HBrO and BrO? were confirmed to be participated in the following homogeneous chemical reaction with the coexisted ammonium ion. However, HBrO is electroactive whereas BrO is electroinactive at carbon electrode. Based upon the reaction of HBrO with NH , an indirect electrochemical method was proposed for determination of NH with dual‐electrode configuration in phosphate buffer solution (pH 7), where HBrO was produced at a generator electrode and the excess HBrO was subsequently detected at a collector electrode after a reaction with NH in a batch solution or in a micro flow injection analytical (micro‐FIA) system by using an interdigitated array (IDA) Pt microelectrode and a carbon film ring‐disk electrode (CFRDE), respectively. The decreasing of reduction current at the collector electrode was proportional to the concentration NH in both systems, with the detection limit below 3.0 μM. This approach shows the advantage of highly selectivity even in presence of a large amount of coexisted cations, and was successfully applied for the determination of NH in environmental water samples.  相似文献   

19.
Ab initio calculations at the CCSD(T)/6‐311++G(2d,p)//B3LYP/6‐311++G(d,p) level of theory have been carried out for three prototypical rearrangement processes of organosilicon anion systems. The first two are reactions of enolate ions which involve oxygen–silicon bond formation via three‐ and four‐membered states, respectively. The overall reactions are: The ΔG (reaction) values for the two processes are +175 and +51 kJ mol?1, with maximum barriers (to the highest transition state) of +55 and +159 kJ mol?1, respectively. The third studied process is the following: (CH3O)C(?CH2)Si(CH3)2CH → (CH3)2(C2H5)Si? + CH2CO, a process involving an SNi reaction between ‐CH and CH3O‐ followed by silicon–carbon bond cleavage. The reaction is favourable [ΔG(reaction) = ?39 kJ mol?1] with the barrier for the SNi process being 175 kJ mol?1. The previous experimental and the current theoretical data are complementary and in agreement. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Ethylene at concentrations of 2.7 × 10?3 to 1.0 × 10?2 mol L?1 has been pyrolyzed at 900 K in a flow system. The products ethane and hydrogen have been analyzed by gas chromatography. The results are consistent with a mechanism in which these products are initially formed as follows: Reaction [1] occurs only 1 to 2% as often as the addition reaction, The latter reaction is close to equilibrium. Taking the rate constant, k4, and the equilibrium constant, K2, from the literature and making small adjustments for minor processes, k1 is found to be (9 ± 3) × 107 L mol?1 s?1. Here the uncertainty is intended to encompass errors in the present work and in the literature parameters. A secondary source of hydrogen was also observed. Its dependence on ethylene concentration was consistent with formation from an intermediate with six carbon atoms, such as cyclohexene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号