首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A simple and sensitive method for the determination of ultra trace amounts of U(VI) and Th(IV) ions by spectrophotometric method after solid-phase extraction on a new extractant-impregnated resin (EIR) has been reported. The new EIR was synthesised by impregnating a weakly polar polymeric adsorbent, Amberlite XAD-7, with titan yellow (TY) as extractant. The analytical method is based on the simultaneous adsorption of analyte ions in a mini-column packed with TY/XAD-7 and performing sequential elution with 0.5% (w/v) Na2CO3 for uranium and 2.0 M HCl for thorium. The influences of the analytical parameters including pH, salting out agent and sample volume were investigated. The interference effects of foreign ions on the retention of the analyte ions were also explored. The limits of detection for U(VI) and Th(IV) were as low as 50 and 25 ng L?1, respectively. Relative standard deviations (n = 7) for U(VI) and Th(IV) were 3.1% and 2.9%, respectively. The method was successfully applied to the determination of ultra trace amounts of U(VI) and Th(IV) in different real matrices including industrial wastewater samples and environmental waters. The proposed method was validated using three certified reference materials and the results were in good agreement with the certified values.  相似文献   

2.
Ganjali MR  Norouzi P  Ghorbani M  Sepehri A 《Talanta》2005,66(5):1225-1233
This work introduce an easy and fast continuous cyclic voltammetric technique for the propose monitoring of ultra trace amounts of salbutamol in a flow–injection system. The potential waveform, which consisted of the potential steps for cleaning, stripping and potential ramp, was continuously applied on an Au disk microelectrode (with a radius of 12.5 μm). The detection method we propose has some advantages, the greatest of which are: (1) removing oxygen from the analyte solution is no longer necessary, and (2) it is a very fast and appropriate technique for the determination of the drug compound in a wide variety of chromatographic analysis methods. The detection limit for salbutamol was 2.0 × 10−9 M. The relative standard deviation (R.S.D.) of the proposed technique at 10 ng/mL was 3.5% for 10 runs. The effects of pH of eluent, accumulation potential, sweep rate, and accumulation time on the sensitivity of the method for the determination of the salbutamol were investigated. The proposed method was applied to the determination of salbutamol in pharmaceutical preparation and biological samples.  相似文献   

3.
《Analytical letters》2012,45(5):997-1007
Abstract

A method was established for enrichment of trace levels of Co(II), Ni(II), Fe(II), and Cu(II) ions in aqueous solutions. These metals were quantitatively retained on an Amberlite XAD‐4 column, after complexation with di‐2‐pyridyl ketone thiosemicarbazone (DPKT). After elution with 1 M HNO3 in acetone, concentration of metals were measured by atomic absorption spectrometry. The effect of major cations of drinking and tap water samples on the sorption of metal ions also were investigated. The amount of the analyte metal ions determined after preconcentration was basically in agreement with the added amount.

The developed method was used for the determination of trace amounts of metal ions in drinking and tap water samples with good results, such as relative standart deviations below 2% (N=6) and recoveries greater than >95%.  相似文献   

4.

A sensitive and simple separation-enrichment technique for the determination of trace amounts of Cu(II), Co(II), Cd(II), Fe(III) and Mn(II) was described. Metal ions were complexed with 1-nitroso-2-naphthol at pH 9. Following solid-phase extraction on Diaion HP-20 resin, metals were determined by flame atomic absorption spectrometry. The effect of the matrix ions were investigated. The recoveries of metal ions were greater than 95%. The detection limits of the analyte ions ( k = 3, N = 21) were varying 0.18 µg/l for Cd(II) to 0.44 µg/l for Fe(III). The method was applied to a stream sediment standard reference material (GBW7309), some ammonium salts and industrial fertilizer samples for the determination of copper, cobalt, cadmium, iron and manganese. The relative standard deviations (RSD) of the determinations for analyte ions at µg/g levels varied from 1 to 10%.  相似文献   

5.
The present study investigates the application of Fe3O4 nanoparticles as an adsorbent for solid phase extraction and their subsequent determination of trace amounts of cobalt, nickel and copper from environmental water samples using flame atomic absorption spectrometry. The analyte ions were adsorbed on magnetic nanoparticles in the pH range of 10–12 and then, Fe3O4 nanoparticles were easily separated from the aqueous solution by applying an external magnetic field and decantation. Hence, no filtration or centrifugation was needed. After extraction and collection of magnetic nanoparticles, the analyte ions were desorbed using 1.0 M HNO3. Several factors that may affect the preconcentration and extraction process, including pH, type and volume of eluent, sample volume, salt effect and matrix effect were optimized. Under the optimized conditions, linearity was maintained from 0.005–3.0 μg/mL for cobalt and nickel and 0.001 to 1.25 μg/mL for copper in the initial solution. The detection limits of this method for cobalt, nickel and copper ions were 0.9, 0.7 and 0.3 ng/mL, respectively. Finally, the method was successfully applied to the extraction and determination of the analyte ions in natural waters and reference plant samples.  相似文献   

6.
A sorbent extraction procedure for Pb(II), Cu(II), Ni(II), and Fe(III) ions on single-walled carbon nanotube disks has been established. Analyte ions were converted to 2-(5-bromo-2-pyridylazo)-5-diethylamino-phenol chelates, then adsorbed on the disk. Adsorbed chelates were easily desorbed from the disk by using 10 mL 2 M HNO3. The various analytical parameters, including pH and reagent amounts that were effective for the recoveries of the analytes on nanotube disks, were optimized. The influence of matrix ions was also studied. The LOD values based on 3sigma were in the 0.3-4.6 microg/L range. Validation of the proposed SPE procedure was carried out by the determination of analytes in certified reference materials (TMDA-54.4 fortified lake water and HR-1 Humber River sediment). Spiking and recovery experiments for the analyte ions in real samples gave good results. Application of the procedure was illustrated by the determination of analyte contents in some animal feeds and water samples from Turkey.  相似文献   

7.
Soylak M  Tuzen M  Mendil D  Turkekul I 《Talanta》2006,70(5):1129-1135
A solid phase extraction procedure based on biosorption of copper(II), lead(II), zinc(II), iron(III), nickel(II) and cobalt(II) ions on Aspergillus fumigatus immobilized Diaion HP-2MG has been investigated. The analytical conditions including amounts of A. fumigatus, eluent type, flow rates of sample and eluent solutions were examined. Good recoveries were obtained to the spiked natural waters. The influences of the concomitant ions on the retentions of the analytes were also examined. The detection limits (3sigma, N = 11) were 0.30 μg l−1 for copper, 0.32 μg l−1 for iron, 0.41 μg l−1 for zinc, 0.52 μg l−1 for lead, 0.59 μg l−1 for nickel and 0.72 μg l−1 for cobalt. The relative standard deviations of the procedure were below 7%. The validation of the presented procedure is performed by the analysis of three standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 1515 Apple leaves and GBW 07605 Tea). The procedure was successfully applied for the determination of analyte ions in natural waters microwave digested samples including street dust, tomato paste, black tea, etc.  相似文献   

8.
A new preconcentration method was developed for the determination of trace amounts of Cu(II), Fe(III), Pb(II), Ni(II), and Cd(II) on a double-walled carbon nanotube disk. 4-(2-Thiazolylazo) resorcinol was used as a complexing reagent. The effects of parameters, including pH of the solutions, amounts of complexing reagent, eluent type, sample volume, flow rates of solutions, and matrix ions were examined for quantitative recoveries of the studied analyte ions. The retained metal ions were eluted by 2 M HNO3. The LOD values for the analytes were in the range of 0.7-4.4 microg/mL. Natural water samples and standard reference materials were analyzed by the presented method.  相似文献   

9.
A solid phase extraction procedure has been developed using multiwalled carbon nanotubes (MWCNTs) as a solid sorbent and quinalizarin [1,2,5,8-tetrahydroxyanthracene-9,10-dione] as a chelating agent for separation and preconcentration of trace amounts of some heavy metal ions, Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) before their determination by flame atomic absorption spectroscopy (FAAS). The influences of the analytical parameters, including pH, amounts of quinalizarin and adsorbent, sample volume, elution conditions such as volume and concentration of eluent, flow rates of solution and matrix ions, were investigated for the optimum recoveries of the analyte ions. No interference effects were observed from the foreign metal ions. The preconcentration factor was 100. The detection limit (LOD) for the investigated metals at the optimal conditions were observed in the range of 0.30–0.65 μg L?1. The relative standard deviation (RSDs), and the recoveries of standard addition for this method were lower than 5.0% and 96–102%, respectively. The new procedure was successfully applied to the determination of analytes in food, water and environmental samples with satisfactory results.  相似文献   

10.
A membrane filtration procedure for the preconcentration and atomic absorption spectrometric determination of Pb(II), Co(II) and Fe(III) ions in natural water samples has been established. Cellulose nitrate membrane filters (0.45 μm and 47 mm diameter) were used in all experiments. The procedure is based on chelate formation of the analyte metals with 1‐(2‐pyridylazo) 2‐naphtol (PAN) and on retention of the chelates on cellulose nitrate membrane filter. The cellulose nitrate membrane and analyte ions were completely dissolved by 500 μL of nitric acid at 85 °C on a hood and then metal determinations were performed by flame atomic absorption spectrometry. The method was applied to natural water samples for the determination of analyte ions with satisfactory results, e.g., recoveries > 95%, RSD's < 10%.  相似文献   

11.
A sorbent extraction method for the separation/preconcentration of Fe, Co, Pb, Cd, and Cr was developed. The analyte metal ions were retained on a column of Ambersorb 563 from a buffered sample solution. The flow rates of the sample and eluent solution were controlled by a peristaltic pump. The analyte ions were quantitatively retained at pH 9 by using an ammonia/ammonium chloride buffer solution, and were then eluted with 5 mL of 0.25 M HNO3 at 5 mL/min flow rate. The detection limits were in the range of 0.33 and 72 g/L for Cd and Pb, respectively. The relative standard deviations were less than 10%. Recoveries of spike addition to drinking water and seawater were quantitative. The method presented was applied for the determination of Fe, Co, Pb, Cd, and Cr ions in drinking and seawater samples with satisfactory results (recoveries >95%).  相似文献   

12.
A novel and selective method for the fast determination of trace amounts of Cu(II) ions in water samples has been developed. The first organic-solution-processable functionalized-graphene (SPF-Graphene) hybrid material with porphyrins, porphyrin-graphene nanohybrid, 5-(4-aminophenyl)-10, 15, 20-triphenyl porphyrin and its photophysical properties including optical (TPP) and grapheme oxide molecules covalently bonded together via an amide bond (TPP-NHCO-SPFGraphene) were used as absorbent for extraction of Cu(II) ions by solid phase extraction method. The complexes were eluted with HNO3 (2 M) 10% (vol/vol) methanol in acetone and determined the analyte by flame atomic absorption spectrometry. The procedure is based on the selective formation of Cu(II) at optimum pH by elution with organic eluents and determination by flame atomic absorption spectrometry. The method is based on complex formation on the surface of the ENVI-18 DISK? disks modified porphyrin-graphene nanohybrid, 5-(4-aminophenyl)-10,15,20-triphenyl porphyrin (TPP) and grapheme oxide molecules covalently bonded together via an amide bond (TPP-NHCO-SPFGraphene) followed by stripping of the retained species by minimum amounts of appropriate organic solvents. The elution is efficient and quantitative. The effect of potential interfering ions, pH, TPP-NHCO-SPFGraphene, amount, stripping solvent, and sample flow rate were also investigated. Under the optimal experimental conditions, the break-through volume was found to about 1000 mL providing a preconcentration factor of 600. The maximum capacity of the disks was found to be 398 ± 3 μg for Cu2+. The limit of detection of the proposed method is 5 ng per 1000 mL. The method was applied to the extraction and recovery of copper in different water samples.  相似文献   

13.
Inczédy J 《Talanta》1970,17(12):1212-1215
The theoretical requirements for the quantitative photometric determination of trace amounts of metal ions by use of complex displacement reactions are discussed and a calculation method using conditional equilibrium constants and side-reaction functions defined and used by Ringbom is recommended. As an example, the requirements in the determination of erbium(III) by using copper(II)-EDTA complex and PAN indicator in ammonium lactate buffer solutions are calculated.  相似文献   

14.
The presented paper deals with a new methodology for direct determination of propranolol in human plasma. The methodology described is based on sequential injection analysis technique (SIA) coupled with solid phase extraction (SPE) column based on restricted access materials (RAM). Special RAM column containing 30 μm polymeric material—N-vinylacetamide copolymer was integrated into the sequential injection manifold. SIA–RAM system was used for selective retention of propranolol, while the plasma matrix components were eluted with two weak organic solutions to waste.

Due to the acid–basic and polarity properties of propranolol molecule and principles of reversed-phase chromatography, it was possible to retain propranolol on the N-vinylacetamide copolymer sorbent (Shodex MSpak PK-2A 30 μm (2 mm × 10 mm)). Centrifuged plasma samples were aspirated into the system and loaded onto the column using acetonitrile–water (5:95, v/v), pH 11.00, adjusted by triethylamine. The analyte was retained on the column while proteins contained in the sample were removed to waste. Interfering endogenous substances complicating detection were washed out by acetonitrile–water (15:85), pH 11.00 in the next step. The extracted analyte was eluted by means of tetrahydrofuran–water (25:75), pH 11.00 to the fluorescence detector (emission filter 385 nm). The whole procedure comprising sample pre-treatment, analyte detection and column reconditioning took about 15 min. The recoveries of propranolol from undiluted plasma were in the range 96.2–97.8% for three concentration levels of analyte. The proposed SIA–RAM method has been applied for direct determination of propranolol in human plasma.  相似文献   


15.
Cloud point methodology has been successfully used for the preconcentration of trace amounts of Cd and Pb as a prior step to their determination by flame atomic absorption spectrometry. O,O-Diethyldithiophosphate and Triton X-114 are used as hydrophobic ligand and non-ionic surfactant, respectively. After phase separation at 40 °C based on cloud point of the mixture, the surfactant-rich phase is diluted with methanol. The enriched analyte in the final solution is determined by flame atomic absorption spectrometry using conventional nebulization. After optimization of the complexation and extraction conditions, enhancement factors of 22 and 43 were obtained for Cd and Pb, respectively. Under the experimental conditions used, preconcentration of only 10 ml of sample in the presence of 0.05% (v/v) Triton X-114 permitted the detection of 0.62 μg l−1 of Cd and 2.86 μg l−1of Pb. The proposed method was applied to the determination of Cd and Pb in human hair samples.  相似文献   

16.
 The second derivative spectrophotometric method has been developed as a procedure for the determination of neodymium, holmium and erbium in mixed rare earths. It was found that the 1-ethyl-6, 8-difluoro-7-(3-methyl-1-piperazinyl)-4-oxo-1,4- dihydro-3-quinoline carboxylic acid forms stable complexes with neodymium, holmium and erbium ions in the pH 9.2–10.5 range. In the second derivative spectra the optimum analytical signals for neodymium, holmium and erbium are at 576.2 (+)−574.5 (−)nm, 444.2 (+) −447.8 (−)nm and 516.0 (+) −517.2(−)nm, respectively. Beer’s law is obeyed from 5.0×10−5 M to 2.5×10−4 M of neodymium, holmium and erbium. The quantification limits (10 Sb) were 1.2×10−5 M for Nd, 9.7×10−5 M for Ho and 3.0×10−6 M for Er. Received April 22, 1998. Revision March 8, 1999.  相似文献   

17.
A highly sensitive spectrophotometric determination of cationic surfactants in ground waters was established by forming their Cu(II)-TPPS aggregates, preceded by solid-phase extraction with an SCX cartridge. Cationic surfactants (CSs) were quantitatively trapped and isolated by the SCX solid phase. The use of Cu(II)-TPPS anionic chromophore could reduce the interference by unintentional metal ions coexisting in surrounding waters. The method was very sensitive in the determination of CSs less than 10−5 M levels with acceptable recovery and calibration data. The colorimetric sensitivity was very dependent on the alkyl-chain length of the surfactants, and a CS having 23 carbon atoms gave the highest sensitivity. Overall recoveries were 95-97% with R.S.Ds. less than 3% in the cases over 10−6 M levels. In the cases in 10−7 M levels, however, a portion of the analyte would be adsorbed by reservoir walls, which could seriously affect the trace determination. The preliminary addition of 4,4′-bipyridyl into the sample solution was effective in decreasing such unintentional analyte losses, leading up to 73% recovery. The developed method was applied to the analysis of river water at ppb levels of CSs with a fractional concentration through a SCX solid phase subjected by 500-mL aliquots of sample.  相似文献   

18.
A column solid-phase extraction method for the preconcentration and determination of cadmium(II), copper(II), cobalt(II), iron(III), lead(II), nickel(II) and zinc(II) dithizone chelates by atomic absorption spectrometry has been described. Diaion HP-2MG was used as adsorbent for column studies. The influences of the various analytical parameters including pH of the aqueous solutions, amounts of ligand and resin were investigated for the retentions of the analyte ions. The recovery values are ranged from 95 to 102%. The influences of alkaline and earth alkaline ions were also discussed. The preconcentration factor was 375, when the sample volume and final volume are 750 and 2 ml, respectively. The detection limits of the analyte ions (k=3, N=21) were varying 0.08 μg/l for cadmium to 0.25 μg/l for lead. The relative standard deviations of the determinations at the concentration range of 1.8×10−4 to 4.5×10−5 mmol for the investigated elements were found to be lower than 9%. The proposed solid-phase extraction procedure were applied to the flame atomic absorption spectrometric determinations of analyte ions in natural waters (sea, tap, river), microwave digested samples (milk, red wine and rice) and two different reference standard materials (SRM1515 apple leaves and NRCC-SLRS-4 riverine water).  相似文献   

19.
Tang AN  Ding GS  Yan XP 《Talanta》2005,67(5):942-946
Cloud point extraction was applied as a preconcentration step for electrothermal atomic absorption spectrometry (ETAAS) determination of As(III) in aqueous solutions. After complexation with ammonium pyrrolidinedithiocarbamate, the analyte was quantitatively extracted to the surfactant-rich phase in the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. 0.1 mol L−1 HNO3 in methanol was added to the surfactant-rich phase before ETAAS determination. The precision (R.S.D.) for 11 replicate determinations of 5.0 μg L−1 of As(III) was 3.0%. The concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for ETAAS determination and in the initial solution, was 36 for As(III). The linear concentration range was from 0.1 to 20 μg L−1. The developed method was applied to the determination of As(III) in lake water and river water.  相似文献   

20.
Crew A  Cowell DC  Hart JP 《Talanta》2008,75(5):1221-1226
This paper reports on the development of a novel electrochemical assay for Zn2+ in human sweat, which involves the use of disposable screen-printed carbon electrodes (SPCEs). Initially, SPCEs were used in conjunction with cyclic voltammetry to study the redox characteristics of Zn2+ in a selection of supporting electrolytes. The best defined cathodic and anodic peaks were obtained with 0.1 M NaCl/0.1 M acetate buffer pH 6.0. The anodic peak was sharp and symmetrical which is typical for the oxidation of a thin metal film on the electrode surface. This behaviour was exploited in the development of a differential pulse anodic stripping voltammetric (DPASV) assay for zinc. It was shown that a deposition potential of −1.6 V versus Ag/AgCl and deposition time of 60 s with stirring (10 s equilibration) produced a well-defined stripping peak with Epa = −1.2 V versus Ag/AgCl. Using these conditions, the calibration plot was linear over the range 1 × 10−8 to 5 × 10−6 M Zn2+. The precision was examined by carrying out six replicate measurements at a concentration of 2 × 10−6 M; the coefficient of variation was calculated to be 5.6%. The method was applied to the determination of the analyte in sweat from 10 human volunteers. The concentrations were between 0.39 and 1.56 μg/mL, which agrees well with previously reported values. This simple, low-cost sensitive assay should have application in biomedical studies and for stress and fatigue in sports studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号