首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A glassy carbon electrode was modified with electropolymerized film of diphenylamine sulfonic acid (DPASA). Electropolymerization was performed by cyclic voltammetry in 0.1 M KCl solution. The modified electrode showed an excellent electrocatalytic effect towards oxidation of dopamine (DA) and ascorbic acid (AA). Electrostatic interaction between the negatively charged poly(DPASA) film and either cationic DA species or anionic AA species favorably contributed to the redox response of DA and AA. Anodic peaks of DA and AA in their mixture were well separated by ca 168 and −11.8 mV. The proposed modified electrode was utilized for selective determination of dopamine in the concentration range of 5.0 × 10t7–2.0 × 10−5 M in the presence of high concentration of ascorbic acid. Detection limit was 6.5 × 10−9 M.  相似文献   

2.
The electrocatalytic oxidation of aspirin and acetaminophen on nanoparticles of cobalt hydroxide electrodeposited on the surface of a glassy carbon electrode in alkaline solution was investigated. The process of oxidation and the kinetics have been investigated using cyclic voltammetry, chronoamperometry, and steady-state polarization measurements. Voltammetric studies have indicated that in the presence of drugs, the anodic peak current of low valence cobalt species increases, followed by a decrease in the corresponding cathodic current. This indicates that drugs are oxidized on the redox mediator which is immobilized on the electrode surface via an electrocatalytic mechanism. With the use of Laviron’s equation, the values of anodic and cathodic electron-transfer coefficients and charge-transfer rate constant for the immobilized redox species were determined as α s,a = 0.72, α s,c = 0.30, and k s = 0.22 s−1. The rate constant, the electron transfer coefficient, and the diffusion coefficient involved in the electrocatalytic oxidation of drugs were reported. It was shown that by using the modified electrode, aspirin and acetaminophen can be determined by amperometric technique with detection limits of 1.88 × 10−6 and 1.83 × 10−6 M, respectively. By analyzing the content of acetaminophen and aspirin in bulk forms using chronoamperometric and amperometric techniques, the analytical utility of the modified electrode was achieved. The method was also proven to be valid for analyzing these drugs in urine samples.  相似文献   

3.
The electrocatalytical oxidation of hydrazine at low potential using tetracyanoquinodimethanide adsorbed on silica modified with titanium oxide was investigated by cyclic voltammetry and amperometry. The modified electrode was prepared modifying a carbon paste electrode employing lithium tetracyanoquinodimethanide adsorbed onto silica gel modified with titanium oxide. This electrode showed an excellent catalytic activity and stability for hydrazine oxidation. With this modified electrode, the oxidation potential of hydrazine was shifted toward less positive value, presenting a peak current much higher than those observed on a bare GC electrode. The linear response range, sensitivity and detection limit were, respectively, 2 up to 100 μmol l−1, 0.36 μA l μmol−1, and 0.60 μmol l−1. The repeatability of the modified electrode evaluated in term of relative standard deviation was 4.2% for 10 measurements of 100 μmol l−1 hydrazine solution. The number of electrons involved in hydrazine oxidation (4), the heterogenous electron transfer rate constant (1.08 × 103 mol−1 l s−1), and diffusion coefficient (5.9 × 10−6 cm2 s−1) were evaluated with a rotating disk electrode.  相似文献   

4.
The main purpose of this study is to develop an inexpensive, simple, selective and especially sensitive modified carbon paste electrode (MCPE) for the determination of dopamine (DA) in pharmaceutical and human serum samples. The carbon paste electrode (CPE) has been modified by using [N,N′-bis(2-pyridine carboxamido)-1,2-benzene] nickel(II) complex (Ni(II)bpb) and the electrochemical behavior of the modified electrode has been studied by cyclic voltammetry. The modified electrode shows an excellent electrocatalytic effect on the oxidation of DA. Under optimum conditions, calibration plots are found to be linear in the range of 7.0 × 10−7−1.0 × 10−5 M (r 2 = 0.9940) and 1.0 × 10−5−1.0 × 10−4 M (r2 = 0.9945); the detection limit is 6.2 × 10−8 M. The preparation of MCPE is very easy. The electrode can be renewed by simple polishing. The proposed method shows good sensitivity, reproducibility (RSD ∼ 2.9%), high stability (more than two month) without any considerable change in response and recovery for the determination of DA. The prepared electrode has been successfully applied to the voltammetric determination of DA in pharmaceutical and biological samples. The article is published in the original.  相似文献   

5.
A rapid and convenient electrochemical method is described for the determination of salbutamol based on multi-carbon nanotubes (MWNT) film coated glassy carbon electrode (GCE). The electrochemical behavior of salbutamol at this modified electrode was studied by square wave voltammetry, which indicated that the oxidation peak potential of salbutamol shifted on 40 mV to less positive potential and the peak current increased 4.5 fold, in contrast to that at a bare electrode. Various experimental parameters such as pH value of supporting electrolyte, the amount of modifier, and accumulation time were optimized. Under optimal measurement conditions, there is a good linear relationship between the peak current (I pa) and salbutamol concentration in the range from 8.0 × 10−7 to 1.0 × 10−5 M, and the detection limit is 2.0 × 10−7 M (S/N = 3) at 2 min accumulation. The method has been successfully employed to detect salbutamol in pharmaceutical formulations.  相似文献   

6.
An amperometric sensor for the determination of indole-3-acetic acid (IAA) based on the CeCl3-DHP film modified gold electrode was developed. CeCl3 was dissolved into water in the presence of dihexadecyl hydrogen phosphate (DHP). The IAA sensor was prepared via evaporating solvent of the CeCl3-DHP dispersion on the gold electrode surface. The amperometric response of IAA on the CeCl3-DHP film modified gold electrode was investigated. The experimental results indicate that the passivation of the electrode due to the adsorption of the oxidation product of IAA decreases significantly at the CeCl3-DHP film modified gold electrode, in contrast to that at the bare and the DHP modified gold electrode. The experimental parameters were optimized and an electrochemical method for the determination of IAA was established. The oxidation peak current is linearly with the concentration of IAA from 1 × 10−7 to 2 × 10−5 mol l−1 and the detection limit is 3 × 10−8 mol l−1. The relative standard deviation of eight measurements is 3.2% for 5 × 10−7 mol l−1 IAA. The IAA in plant leaves were extracted and determined by the IAA sensor.  相似文献   

7.
In this paper, the silver doped poly (L-glutamic acid) modified glassy carbon electrode (PLG-Ag/GCE) was fabricated through an electrochemical immobilization. The modified electrode was used for simultaneous determination of uric acid (UA) and ascorbic acid (AA) in 0.1 M phosphate buffer solutions (PBS). The cyclic voltammetric signals of UA and AA were well separated with a potential difference of 396 mV in pH 3.0 phosphate buffer solution. The linear calibration curves were obtained in the concentration range 5.00 × 10−7–1.00 × 10−4 M for UA and 8.00 × 10-6–5.00 × 10−3 M for AA with the detection limits of 3 × 10−7 M and 4 × 10−6 M, respectively. The relative standard deviations were 1.3 and 1.0% for the determinations of UA and AA for 20 continuous measurements. The signal was highly stable and reproducible. This method was successfully applied to the determination of UA in human urine samples.  相似文献   

8.
A cobalt hexacyanoferrate (CoHCF)-modified graphite paraffin wax composite electrode was prepared by a new approach. An amine-functionalised graphite powder was used for the fabrication of the electrode. A functionalised graphite paraffin wax composite electrode was prepared and the surface of the electrode was modified with a thin film of CoHCF. Various parameters that influence the electrochemical behaviour of the modified electrode were studied by varying the background electrolytes, scan rates and pH. The modified electrode showed good electrocatalytic activity towards the oxidation of butylated hydroxyanisole (BHA) under optimal conditions and showed a linear response over the range from 7.9 × 10−7 to 1.9 × 10−4 M of BHA with a correlation coefficient of 0.9988. The limit of detection was 1.9 × 10−7 M. Electrocatalytic oxidation of BHA was effective at the modified electrode at a significantly reduced potential and at a broader pH range. The utility of the modified electrode as an amperometric sensor for the determination of BHA in flow systems was evaluated by carrying out hydrodynamic and chronoamperometric experiments. The modified electrode showed very good stability and a longer shelf life. The modified electrode was applied for the determination of BHA in spiked samples of chewing gum and edible sunflower oil. The advantage of this method is the ease of electrode fabrication, good stability, longer shelf life, low cost and its diverse application for BHA determination. Figure Cyclic Voltammogram of () CoHCF modified electrode, () in presence of 1.9 x 10−5 M of BHA and () bare electrode, () in the presence of 1.9 x 10−5 M of BHA in 1.0 M NaCl, pH 7.0  相似文献   

9.
A sensitive and selective electrochemical method for the determination of norepinephrine using a poly (Evans Blue) film-modified glassy carbon electrode was developed. The polymer film-modified electrode shows excellent electrocatalytic activity toward the oxidation of norepinephrine (NE) in phosphate buffer solution (pH 5.0). The linear range of 5.0 × 10−7–1.8 × 10−5 M and detection limit of 3.5 × 10−8 M were observed for the determination of NE in pH 5.0 phosphate buffer solutions. The interference studies showed that the modified electrode had excellent selectivity for the determination of NE in the presence of large excess of ascorbic acid (AA) and uric acid (UA). The differences of the oxidation peak potentials for NE-AA and NE-UA were about 175 and 172 mV, respectively. The resolution is large enough to determine AA, NE and UA individually. This work provides a simple and easy approach to selective detection of NE in the presence of AA and UA in physiological samples. The article is published in the original.  相似文献   

10.
A glassy carbon electrode (GCE) modified with the film composed of chitosan incorporating cetylpyridine bromide is constructed and used to determine uric acid (UA) and ascorbic acid (AA) by differential pulse voltammetry (DPV). This modified electrode shows efficient electrocatalytic activity and fairly selective separation for oxidation of AA and UA in mixture solution. UA is catalyzed by this modified electrode in phosphate buffer solution (pH 4.0) with a decrease of 80 mV, while AA is catalyzed with a decrease of 200 mV in overpotential compared to GCE, and the peak separation of oxidation between AA and UA is 260 mV, which is large enough to allow the determination of one in presence of the other. Under the optimum conditions, the anodic peak currents (I pa) of DPV are proportional to the concentration of UA in the range of 2.0 × 10−6 to 6.0 × 10−4 M, with the detection limit of 5.0 × 10−7 M at a signal-to-noise ratio of 3 (S/N = 3) and to that of AA in the range of 4.0 × 10−6 to 1.0 × 10−3 M, with the detection limit of 8.0 × 10−7 M (S/N = 3).  相似文献   

11.
A simple and highly selective electrochemical method has been developed for the simultaneous determination of hydroquinone (HQ) and catechol (CC) at a glassy carbon electrode covalently modified with penicillamine (Pen). The electrode is used for the simultaneous electrochemical determination of HQ and CC and shows an excellent electrocatalytical effect on the oxidation of HQ and CC upon cyclic voltammetry in acetate buffer solution of pH 5.0. In differential pulse voltammetric measurements, the modified electrode was able to separate the oxidation peak potentials of HQ and CC present in binary mixtures by about 103 mV although the bare electrode gave a single broad response. The determination limit of HQ in the presence of 0.1 mmol L−1 CC was 1.0 × 10−6 mol L−1, and the determination limit of CC in the presence of 0.1 mmol L−1 HQ was 6.0 × 10−7 mol L−1. The method was applied to the simultaneous determination of HQ and CC in a water sample. It is simple and highly selective.  相似文献   

12.
A glassy-carbon electrode modified with a thin film of multiwall carbon nanotubes is used for the determination of nicotinic acid (NA). At the electrode, the latter yields a well-defined and very sensitive oxidation peak at 0.21 V (SCE). Investigation of the electrochemical behavior of NA shows that the electrode significantly enhances the NA oxidation peak current, compared with the non-modified electrode. Based on this, a very sensitive and simple electrochemical method is proposed for the NA determination after the optimization of all experimental parameters. The oxidation peak current is proportional to the NA concentration over the range 2×10−7 to 4×10−5 M, and the detection limit is 8×10−8 M after a 4-min accumulation. The relative standard deviation of 5.4% for the successive determination of 1×10−6 MNA (n=10) indicates excellent reproducibility. The analysis method is successfully demonstrated using tablet samples. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 2, pp. 190–195. The text was submitted by the author in English.  相似文献   

13.
A multi-wall carbon nanotube (MWNT)/cetyl pyridine bromine (CPB) composite film modified glassy carbon electrode (GCE) was developed for the electrochemical determination of hymecromone in phosphonate buffer. Electrochemical behaviour of hymecromone at the composite film electrode was investigated with voltammetry. Compared with an irreversible oxidation of hymecromone at the bare GCE, the oxidation peak current was enhanced greatly at the film electrode. Some parameters such as pH, scan rate, accumulation potential and accumulation time were optimized. Under optimal conditions, an oxidation peak at 0.82 V was employed to determine hymecromone electrochemically. A linearity between the oxidation peak current and the hymecromone concentration was obtained in the range of 3.0 × 10−7 − 2.0 × 10−5 mol 1−1 with a detection limit of 8.0 × 10−8 mol 1−1. The proposed procedure was successfully applied to assay hymecromone in pharmaceutical formulation with satisfactory results. The text was submitted by the authors in English.  相似文献   

14.
The electrochemical oxidation of thiocytosine on the surface of carbon-paste electrode modified with Schiff base (salophen derivatives) complexes of cobalt is studied. The effect of the substituents in the structure of salophen on the catalytic property of the modified electrode is investigated by using cyclic and differential pulse voltammetry. Cobalt (II)-5-nitrosalophen, because of its electrophilic functional groups, leads to a considerable enhancement in the catalytic activity, sensitivity (peak current), and a marked increase in the anodic potential of the modified electrode. The differential pulse voltammetry is applied as a very sensitive method for the detection of thiocytosine. The linear dynamic range was between 1 × 10−3 to 4 × 10−6 M with a slope of 0.0168 μA/μM, and the detection limit was 1 × 10−6 M. The modified electrode is successfully applied for the voltammetric detection of thiocytosine in human synthetic serum sample and also pharmaceutical preparations. A linear range from 1 × 10−3 to 1 × 10−5 M with a slope of 0.0175 μA/μM is resulted for the standard addition of thiocytosine spiked to the buffered human serum, which is differing from the curve in buffer solution about 4%. The electrode has a very good reproducibility (relative standard deviation for the slope of the calibration curve is less than 3.5% based on six determinations in a month), high stability in its voltammetric response and low detection limit for thiocytosine, and high electrochemical sensitivity with respect to other biological thiols such as cysteine.  相似文献   

15.
A carbon ionic liquid electrode (CILE) was fabricated by mixing N-butylpyridinium hexafluoro-phosphate (BPPF 6 ) with graphite powder and further used for the investigation on the electrochemical behavior of L-tryptophan (Trp). The fabricated CILE showed good conductivity, inherent electrocatalytic ability and strong promotion to the electron transfer of Trp. On the CILE, an irreversible oxidation peak appeared at 0.948 V (vs. saturated calomel reference electrode). For 5.0 × 10−5 M Trp the oxidation peak current increased about 5 times and the oxidation peak potential decreased on 0.092 V compared to carbon paste electrode. The results indicated that an electrocatalytic reaction occurred on CILE. The conditions for the electrochemical detection were optimized and the electrochemical parameters of Trp on CILE were carefully investigated. Under the selected conditions, the oxidation peak current showed linear relationship with Trp concentration in the range of 8.0 × 10−6 ∼1.0 × 10−3 M for cyclic voltammetry and the detection limit was estimated as 4.8 × 10−6 M (3σ). The interferences of other amino acids or metal ions on the determination were tested and the proposed method was successfully applied to the synthetic sample analysis.  相似文献   

16.
Self-assembled monolayers (SAMS) of chemisorbed thioglycollate on a gold electrode surface have been used as a base interface for the electrostatic adsorption of ferrocenium ion. Electrochemical impedance spectra (EIS) and cyclic voltammetry (CV) were used to evaluate the electrochemical properties of the supramolecular film. The bare gold electrode failed to distinguish the oxidation peaks of ascorbic acid (AA) and uric acid (UA) in phosphate buffer solution (PBS, pH 7.0), while the ferricinium–thioglycollate modified electrode could separate them efficiently. In differiential pulse voltammetric measurements, the prepared gold electrode could separate AA and UA signals, allowing the simultaneous determination of AA and UA. Under optimal conditions and within the linear range of 1.0 × 10−6 to 5.0 × 10−4 M, the detection limits of AA and UA achieved were 2.0 × 10−7 and 1.0 × 10−7 M, respectively. The applicability of the prepared electrode was demonstrated by measuring AA and UA in human urine without any pretreatment. Figure Fabrication process for the modified electrode  相似文献   

17.
A novel L-cysteine film modified electrode has been fabricated by means of an electrochemical oxidation procedure, and it was successfully applied to the electrochemical determination of acetaminophen. This method utilizes the electrooxidation of amines to their analogous cation radicals to form a chemically stable covalent linkage between the nitrogen atom of the amine and edge plane sites at the glassy carbon electrode surface. The electrochemical behaviour of acetaminophen at the film electrode was investigated in 0.1 mol L−1 phosphate buffer (pH 6.20). It was found that the redox peak current of acetaminophen was enhanced greatly on the film electrode. Linearity between the oxidation peak current and the acetaminophen concentration was obtained in the range of 1.0 × 10−4–2.0 × 10−7 mol L−1 with a detection limit of 5.0 × 10−8 mol L−1. For seven parallel detections of 1.0 × 10−5 mol L−1 acetaminophen, the relative standard deviation (RSD) was 1.46%, suggesting that the film electrode has excellent reproducibility. Application to the determination of acetaminophen in drug tablets and human urine demonstrated that the film electrode has good stability and high sensitivity.  相似文献   

18.
 The voltammetric behavior of the electrode modified with poly(1-naphthylamine) film doped with α-P2W18 heteropolyanions was investigated. The concentration of the modifier, the acidity of the medium and the scan range of potential had obvious effects on the electrochemical characteristics of the electrode. The electrocatalytical characteristics of the film electrode were studied by cyclic voltammetry and other methods. It is suggested that the electrocatalytic reaction of nitrite is controlled by its diffusion. The applicability of the electrode was assessed by the determination of nitrite in waste-water. Determination limit for nitrite was 5 × 10−7 mol.L−1. Received August 23, 1999. Revision January 2, 2001  相似文献   

19.
Conducting and stable poly (N-methylaniline) film was prepared by using the repeated potential cycling technique in aqueous solution containing N-methylaniline, sulfuric acid, and sodium dodecyl sulfate (SDS) at the surface of carbon paste electrode (CPE). The transition metal ions of Co(ІІ) were incorporated to the polymer by immersion of the modified electrode in 0.1 M cobalt chloride solution for 10 min. The electrochemical characterization of this modified electrode exhibits stable redox behavior of Co(ІІ)Co(ІІІ) and formation of insoluble oxide/hydroxide cobalt species on the CPE surface. The modified electrode showed well-defined and stable redox couples in alkaline aqueous solution. The modified electrode showed excellent electrocatalytic activity for oxidation of hydrogen peroxide. The response of modified electrode toward the H2O2 oxidation was examined using cyclic voltammetry, differential pulse voltammetry, square wave voltammetry, and chronoamperometry. This modified electrode has many advantages such as simple preparation procedure, good reproducibility, and high catalytic activity toward the hydrogen peroxide oxidation. Such characteristics were explored for the specific determination of hydrogen peroxide in cosmetics product sample, giving results in excellent agreement with those obtained by standard method.  相似文献   

20.
A glassy carbon electrode coated with film of 4-tert-butyl-1-(ethoxycarbonylmethoxy)thiacalix[4]arene is designed for the determination of trace amounts of Ag+. Compared with bare glassy carbon electrode, the modified electrode can greatly improve the measuring sensitivity for Ag+. Under the optimum experimental conditions, the modified electrode in B-R buffer solution (pH 4.5) shows a linear voltammetric response in the range of 5.0 × 10−8–3.0 × 10−6 M with detection limit 1.0 × 10−8 M for Ag+. The high sensitivity, selectivity, and stability of modified electrode also demonstrate its practical application for a simple, rapid and economical determination of Ag+ in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号