首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, we report the neuroprotective and antioxidant activity of 1,1′-biphenyl nitrones (BPNs) 1–5 as α-phenyl-N-tert-butylnitrone analogues prepared from commercially available [1,1′-biphenyl]-4-carbaldehyde and [1,1′-biphenyl]-4,4′-dicarbaldehyde. The neuroprotection of BPNs 1-5 has been measured against oligomycin A/rotenone and in an oxygen–glucose deprivation in vitro ischemia model in human neuroblastoma SH-SY5Y cells. Our results indicate that BPNs 1–5 have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN), and they are quite similar to N-acetyl-L-cysteine (NAC), which is a well-known antioxidant agent. Among the nitrones studied, homo-bis-nitrone BPHBN5, bearing two N-tert-Bu radicals at the nitrone motif, has the best neuroprotective capacity (EC50 = 13.16 ± 1.65 and 25.5 ± 3.93 μM, against the reduction in metabolic activity induced by respiratory chain blockers and oxygen–glucose deprivation in an in vitro ischemia model, respectively) as well as anti-necrotic, anti-apoptotic, and antioxidant activities (EC50 = 11.2 ± 3.94 μM), which were measured by its capacity to reduce superoxide production in human neuroblastoma SH-SY5Y cell cultures, followed by mononitrone BPMN3, with one N-Bn radical, and BPMN2, with only one N-tert-Bu substituent. The antioxidant activity of BPNs 1-5 has also been analyzed for their capacity to scavenge hydroxyl free radicals (82% at 100 μM), lipoxygenase inhibition, and the inhibition of lipid peroxidation (68% at 100 μM). Results showed that although the number of nitrone groups improves the neuroprotection profile of these BPNs, the final effect is also dependent on the substitutent that is being incorporated. Thus, BPNs bearing N-tert-Bu and N-Bn groups show better neuroprotective and antioxidant properties than those substituted with Me. All these results led us to propose homo-bis-nitrone BPHBN5 as the most balanced and interesting nitrone based on its neuroprotective capacity in different neuronal models of oxidative stress and in vitro ischemia as well as its antioxidant activity.  相似文献   

2.
Numerous scientific studies have confirmed the beneficial therapeutic effects of phenolic acids. Among them gentisic acid (GA), a phenolic acid extensively found in many fruit and vegetables has been associated with an enormous confirmed health benefit. The present study aims to evaluate the antidiabetic potential of gentisic acid and highlight its mechanisms of action following in silico and in vitro approaches. The in silico study was intended to predict the interaction of GA with eight different receptors highly involved in the management and complications of diabetes (dipeptidyl-peptidase 4 (DPP4), protein tyrosine phosphatase 1B (PTP1B), free fatty acid receptor 1 (FFAR1), aldose reductase (AldR), glycogen phosphorylase (GP), α-amylase, peroxisome proliferator-activated receptor gamma (PPAR-γ) and α-glucosidase), while the in vitro study studied the potential inhibitory effect of GA against α-amylase and α-glucosidase. The results indicate that GA interacted moderately with most of the receptors and had a moderate inhibitory activity during the in vitro tests. The study therefore encourages further in vivo studies to confirm the given results.  相似文献   

3.
The antioxidant and enzyme inhibitory potential of fifteen cycloartane-type triterpenes’ potentials were investigated using different assays. In the phosphomolybdenum method, cycloalpioside D (6) (4.05 mmol TEs/g) showed the highest activity. In 1,1-diphenyl-2-picrylhydrazyl (DPPH*) radical and 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) cation radical scavenging assays, cycloorbicoside A-7-monoacetate (2) (5.03 mg TE/g) and cycloorbicoside B (10) (10.60 mg TE/g) displayed the highest activities, respectively. Oleanolic acid (14) (51.45 mg TE/g) and 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 7-monoacetate (4) (13.25 mg TE/g) revealed the highest reducing power in cupric ion-reducing activity (CUPRAC) and ferric-reducing antioxidant power (FRAP) assays, respectively. In metal-chelating activity on ferrous ions, compound 2 displayed the highest activity estimated by 41.00 mg EDTAE/g (EDTA equivalents/g). The tested triterpenes showed promising AChE and BChE inhibitory potential with 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 2′,3′,4′,7-tetraacetate (3), exhibiting the highest inhibitory activity as estimated from 5.64 and 5.19 mg GALAE/g (galantamine equivalent/g), respectively. Compound 2 displayed the most potent tyrosinase inhibitory activity (113.24 mg KAE/g (mg kojic acid equivalent/g)). Regarding α-amylase and α-glucosidase inhibition, 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol (5) (0.55 mmol ACAE/g) and compound 3 (25.18 mmol ACAE/g) exerted the highest activities, respectively. In silico studies focused on compounds 2, 6, and 7 as inhibitors of tyrosinase revealed that compound 2 displayed a good ranking score (−7.069 kcal/mole) and also that the ΔG free-binding energy was the highest among the three selected compounds. From the ADMET/TOPKAT prediction, it can be concluded that compounds 4 and 5 displayed the best pharmacokinetic and pharmacodynamic behavior, with considerable activity in most of the examined assays.  相似文献   

4.
Warionia saharae Benth. & Coss. (Asteraceae) is an endemic species of North Africa naturally grown in the southwest of the Algerian Sahara. In the present study, this species’ hydromethanolic leaf extract was investigated for its phenolic profile characterized by ultra-high-performance liquid chromatography coupled with a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI/MS). Additionally, the chemical composition of W. saharae was analyzed by gas chromatography–mass spectrometry, and its antioxidant potential was assessed through five in vitro tests: DPPH scavenging activity, ABTS●+ scavenging assay, galvinoxyl scavenging activity, ferric reducing power (FRP), and cupric reducing antioxidant capacity. The UHPLC-DAD-ESI/MS analysis allowed the detection and quantification of 22 compounds, with taxifolin as the dominant compound. The GC–MS analysis allowed the identification of 37 compounds, and the antioxidant activity data indicate that W. saharae extract has a very high capacity to capture radicals due to its richness in compounds with antioxidant capacity. The extract also showed potent α-glucosidase inhibition as well as a good anti-inflammatory activity. However, weak anti-α-amylase and anticholinesterase activities were recorded. Moreover, an in silico docking study was performed to highlight possible interactions between three significant compounds identified in W. saharae extract and α-glucosidase enzyme.  相似文献   

5.
Previously, a hypothetical protein (HP) termed Bleg1_2437 (currently named Bleg1_2478) from Bacillus lehensis G1 was discovered to be an evolutionary divergent B3 subclass metallo-β-lactamase (MBL). Due to the scarcity of clinical inhibitors for B3 MBLs and the divergent nature of Bleg1_2478, this study aimed to design and characterise peptides as inhibitors against Bleg1_2478. Through in silico docking, RSWPWH and SSWWDR peptides with comparable binding energy to ampicillin were obtained. In vitro assay results showed RSWPWH and SSWWDR inhibited the activity of Bleg1_2478 by 50% at concentrations as low as 0.90 µM and 0.50 µM, respectively. At 10 µM of RSWPWH and 20 µM of SSWWDR, the activity of Bleg1_2478 was almost completely inhibited. Isothermal titration calorimetry (ITC) analyses showed slightly improved binding properties of the peptides compared to ampicillin. Docked peptide–protein complexes revealed that RSWPWH bound near the vicinity of the Bleg1_2478 active site while SSWWDR bound at the center of the active site itself. We postulate that the peptides caused the inhibition of Bleg1_2478 by reducing or blocking the accessibility of its active site from ampicillin, thus hampering its catalytic function.  相似文献   

6.
Diabetes mellitus is a chronic disease and one of the fastest-growing health challenges of the last decades. Studies have shown that chronic low-grade inflammation and activation of the innate immune system are intimately involved in type 2 diabetes pathogenesis. Momordica charantia L. fruits are used in traditional medicine to manage diabetes. Herein, we report the purification of a new 23-O-β-d-allopyranosyl-5β,19-epoxycucurbitane-6,24-diene triterpene (charantoside XV, 6) along with 25ξ-isopropenylchole-5(6)-ene-3-O-β-d-glucopyranoside (1), karaviloside VI (2), karaviloside VIII (3), momordicoside L (4), momordicoside A (5) and kuguaglycoside C (7) from an Indian cultivar of Momordica charantia. At 50 µM compounds, 2–6 differentially affected the expression of pro-inflammatory markers IL-6, TNF-α, and iNOS, and mitochondrial marker COX-2. Compounds tested for the inhibition of α-amylase and α-glucosidase enzymes at 0.87 mM and 1.33 mM, respectively. Compounds showed similar α-amylase inhibitory activity than acarbose (0.13 mM) of control (68.0–76.6%). Karaviloside VIII (56.5%) was the most active compound in the α-glucosidase assay, followed by karaviloside VI (40.3%), while momordicoside L (23.7%), A (33.5%), and charantoside XV (23.9%) were the least active compounds. To better understand the mode of binding of cucurbitane-triterpenes to these enzymes, in silico docking of the isolated compounds was evaluated with α-amylase and α-glucosidase.  相似文献   

7.
Traditional medicinal plants contain a variety of bioactive natural products including cysteine-rich (Cys-rich) antimicrobial peptides (AMPs). Cys-rich AMPs are often crosslinked by multiple disulfide bonds which increase their resistance to chemical and enzymatic degradation. However, this class of molecules is relatively underexplored. Herein, in silico analysis predicted 80–100 Cys-rich AMPs per species from three edible traditional medicinal plants: Linum usitatissimum (flax), Trifolium pratense (red clover), and Sesamum indicum (sesame). Bottom-up proteomic analysis of seed peptide extracts revealed direct evidence for the translation of 3–10 Cys-rich AMPs per species, including lipid transfer proteins, defensins, α-hairpinins, and snakins. Negative activity revealed by antibacterial screening highlights the importance of employing a multi-pronged approach for AMP discovery. Further, this study demonstrates that flax, red clover, and sesame are promising sources for further AMP discovery and characterization.  相似文献   

8.
Schiff-base–bearing new bis(thiosemicarbazone) derivatives were prepared from terephthalaldehyde and various thiosemicarbazides. FT–IR, 1H NMR, 13C NMR, and UV–Vis spectroscopic methods and elemental analysis were used to elucidate the identification of the synthesized molecules. The in vitro antioxidant activity of the synthesized compounds was analysed with the 1,1-diphenyl-2-picryl hydrazyl free-radical–trapping process. The synthesized compounds exhibited lower antioxidant activity than the standard ascorbic acid. IC50 values of the synthesized molecules measured from 3.81 ± 0.01 to 29.05 ± 0.11 μM. Among the synthesized compounds, compound 3 had the best antioxidant activity. Moreover, this study explained the structure–activity relationship of the synthesized molecules with different substituents in radical trapping reactions.  相似文献   

9.
Salvia officinalis L. (sage) is one of the most appreciated plants for its plethora of biologically active compounds. The objective of our research was a comparative study, in the Mediterranean context, of chemical composition, anticholinesterases, and antioxidant properties of essential oils (EOs) from sage collected in three areas (S1–S3) of Southern Italy. EOs were extracted by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory properties were investigated by employing Ellman’s method. Four in vitro assays, namely, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric-reducing ability power (FRAP), and β-carotene bleaching tests, were used to study the antioxidant effects. Camphor (16.16–18.92%), 1,8-cineole (8.80–9.86%), β-pinene (3.08–9.14%), camphene (6.27–8.08%), and α-thujone (1.17–9.26%) are identified as the most abundant constituents. However, the content of these constituents varied depending on environmental factors and pedoclimatic conditions. Principal component analysis (PCA) was performed. Based on Relative Antioxidant Capacity Index (RACI), S2 essential oil exhibited the highest radical potential with an IC50 value of 20.64 μg/mL in ABTS test and presented the highest protection of lipid peroxidation with IC50 values of 38.06 and 46.32 μg/mL after 30 and 60 min of incubation, respectively. The most promising inhibitory activity against BChE was found for S3 sample (IC50 of 33.13 μg/mL).  相似文献   

10.
The present investigation aimed to provide novel information on the chemical composition and in vitro bioaccessibility of bioactive compounds from raw citrus pomaces (mandarin varieties Clemenule and Ortanique and orange varieties Navel and Valencia). The effects of the baking process on their bioaccessibility was also assessed. Samples of pomaces and biscuits containing them as an ingredient were digested, mimicking the human enzymatic oral gastrointestinal digestion process, and the composition of the digests were analyzed. UHPLC-MS/MS results of the citrus pomaces flavonoid composition showed nobiletin, hesperidin/neohesperidin, tangeretin, heptamethoxyflavone, tetramethylscutellarein, and naringin/narirutin. The analysis of the digests indicated the bioaccessibility of compounds possessing antioxidant [6.6–11.0 mg GAE/g digest, 65.5–97.1 µmol Trolox Equivalents (TE)/g digest, and 135.5–214.8 µmol TE/g digest for total phenol content (TPC), ABTS, and ORAC-FL methods, respectively; significant reduction (p < 0.05) in Reactive Oxygen Species (ROS) formation under tert-butyl hydroperoxide (1 mM)-induced conditions in IEC-6 and CCD-18Co cells when pre-treated with concentrations 5–25 µg/mL of the digests], anti-inflammatory [significant reduction (p < 0.05) in nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages], and antidiabetic (IC50 3.97–11.42 mg/mL and 58.04–105.68 mg/mL for α-glucosidase and α-amylase inhibition capacities) properties in the citrus pomaces under study. In addition, orange pomace biscuits with the nutrition claims “no-added sugars” and “source of fiber”, as well as those with good sensory quality (6.9–6.7, scale 1–9) and potential health promoting properties, were obtained. In conclusion, the results supported the feasibility of citrus pomace as a natural sustainable source of health-promoting compounds such as flavonoids. Unfractionated orange pomace may be employed as a functional food ingredient for reducing the risk of pathophysiological processes linked to oxidative stress, inflammation, and carbohydrate metabolism, such as diabetes, among others.  相似文献   

11.
Dengue virus (DENV), a member of the family Flaviviridae, is a threat for global health as it infects more than 100 million people yearly. Approved antiviral therapies or vaccines for the treatment or prevention of DENV infections are not available. In the present study, natural compounds were screened for their antiviral activity against DENV by in vitro cell line-based assay. α-Mangostin, a xanthanoid, was observed to exert antiviral activity against DENV-2 under pre-, co- and post-treatment testing conditions. The antiviral activity was determined by foci forming unit (FFU) assay, quantitative RT-PCR and cell-based immunofluorescence assay (IFA). A complete inhibition of DENV-2 was observed at 8 µM under the co-treatment condition. The possible inhibitory mechanism of α-Mangostin was also determined by docking studies. The molecular docking experiments indicate that α-Mangostin can interact with multiple DENV protein targets such as the NS5 methyltransferase, NS2B-NS3 protease and the glycoprotein E. The in vitro and in silico findings suggest that α-Mangostin possesses the ability to suppress DENV-2 production at different stages of its replication cycle and might act as a prophylactic/therapeutic agent against DENV-2.  相似文献   

12.
The rational design of linear peptides that assemble controllably and predictably in water is challenging. Short sequences must encode unique target structures and avoid alternative states. However, the non-covalent forces that stabilize and discriminate between states are weak. Nonetheless, for α-helical coiled-coil assemblies considerable progress has been made in rational de novo design. In these, sequence repeats of nominally hydrophobic (h) and polar (p) residues, hpphppp, direct the assembly of amphipathic helices into dimeric to tetrameric bundles. Expanding this pattern to hpphhph can produce larger α-helical barrels. Here, we show that pentameric to nonameric barrels are accessed by varying the residue at one of the h sites. In peptides with four L/I–K–E–I–A–x–Z repeats, decreasing the size of Z from threonine to serine to alanine to glycine gives progressively larger oligomers. X-ray crystal structures of the resulting α-helical barrels rationalize this: side chains at Z point directly into the helical interfaces, and smaller residues allow closer helix contacts and larger assemblies.

Systematic de novo design of peptides that form α-helical barrels with functionalisable central channels with a range of internal diameters.  相似文献   

13.
Antimicrobial resistance (AMR) threatens millions of people around the world and has been declared a global risk by the World Economic Forum. One of the important AMR mechanisms in Enterobacteriaceae is the production of extended-spectrum β-lactamases. The most common ESBL, CTX-M β-lactamases, is spread to the world by CTX-M-15 and CTX-M-14. Sulbactam, clavulanic acid, and tazobactam are first-generation β-lactamase inhibitors and avibactam is a new non-β-lactam β-lactamase inhibitor. We studied that avibactam, sulbactam, clavulanic acid, tazobactam, and quercetin natural flavonoids were docked to target protein CTXM-15. Subsequently, the complexes were simulated using the molecular dynamics simulations method during 100 ns for determining the final binding positions of ligands. Clavulanic acid left CTX-M-15 and other ligands remained in the binding site after the simulation. The estimated binding energies were calculated during 100 ns simulation by the MMGBSA-MMPBSA method. The estimated free binding energies of avibactam, sulbactam, quercetin, tazobactam, and clavulanic acid were sorted as –33.61 kcal/mol, –16.04 kcal/mol, –14 kcal/mol, –12.68 kcal/mol, and –2.95 kcal/mol. As a result of both final binding positions and free binding energy calculations, Quercetin may be evaluated an alternative candidate and a more potent β-lactamases inhibitor for new antimicrobial combinations to CTX-M-15. The results obtained in silico studies are predicted to be a preliminary study for in vitro studies for quercetin and similar bioactive natural compounds. These studies are notable for the discovery of natural compounds that can be used in the treatment of infections caused by β-lactamase-producing pathogens.  相似文献   

14.
The 2-amino-5-(3/4-fluorostyryl)acetophenones were prepared and reacted with benzaldehyde derivatives to afford the corresponding 5-styryl-2-aminochalcone hybrids. The trans geometry of the styryl and α,β-unsaturated carbonyl arms, and the presence of NHO intramolecular hydrogen bond were validated using 1H-NMR and X-ray data. The 2-amino-5-styrylacetophenones and their 5-styryl-2-aminochalcone derivatives were screened in vitro for their capability to inhibit α-glucosidase and/or α-amylase activities. Their antioxidant properties were evaluated in vitro through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. Kinetic studies of the most active derivatives from each series against α-glucosidase and/or α-amylase activities have been performed supported by molecular docking studies to determine plausible protein–ligand interactions on a molecular level. The key aspects of the pharmacokinetics of these compounds, i.e., absorption, distribution, metabolism, and excretion have also been simulated at theoretical level. The most active compounds from each series, namely, 2a and 3e, were evaluated for cytotoxicity against the normal monkey kidney cells (Vero cells) and the adenocarcinomic human epithelial (A549) cell line to establish their safety profile at least in vitro.  相似文献   

15.
Antioxidant activity is an important feature for food contact materials such as packaging, aiming to preserve freshness and retard food spoilage. Common bioactive agents are highly susceptible to various forms of degradation; therefore, protection is required to maintain functionality and bioavailability. Poly(ε-caprolactone) (PCL), a biodegradable GRAS labeled polymer, was used in this study for encapsulation of α-tocopherol antioxidant, a major component of vitamin E, in the form of electrospun fibers. Rheological properties of the fiber forming solutions, which determine the electrospinning behavior, were correlated with the properties of electrospun fibers, e.g., morphology and surface properties. Interactions through hydrogen bonds were evidenced between the two components. These have strong effect on structuration of macromolecular chains, especially at low α-tocopherol amounts, decreasing viscosity and elastic modulus. Intra-molecular interactions in PCL strengthen at high α-tocopherol amounts due to decreased solvation, allowing good structural recovery after cease of mechanical stress. Morphologically homogeneous electrospun fibers were obtained, with ~6 μm average diameter. The obtained fibers were highly hydrophobic, with fast release in 95% ethanol as alternative simulant for fatty foods. This induced good in vitro antioxidant activity and significant in vivo reduction of microbial growth on cheese, as determined by respirometry. Therefore, the electrospun fibers from PCL entrapping α-tocopherol as bioactive agent showed potential use in food packaging materials.  相似文献   

16.
In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography−tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities (IC50: 0.05 ± 0.0001 mg/mL, IC50: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity (IC50: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.  相似文献   

17.
Most of the health benefits derived from cereals are attributed to their bioactive compounds. This study evaluated the levels of the bioactive compounds, and the antioxidant and starch-hydrolyzing enzymes inhibitory properties of six pipeline Striga-resistant yellow-orange maize hybrids (coded AS1828-1, 4, 6, 8, 9, 11) in vitro. The maize hybrids were grown at the International Institute of Tropical Agriculture (IITA), Nigeria. The bioactive compounds (total phenolics, tannins, flavonoids, and phytate) levels, antioxidant (DPPH and ABTS•+ scavenging capacity and reducing power) and starch-hydrolyzing enzymes (α-amylase and α-glucosidase) inhibitory activities of the maize hybrids were determined by spectrophotometry. At the same time, carotenoids were quantified using a reverse-phase HPLC system. The ranges of the bioactive compounds were: 11.25–14.14 mg GAE/g (total phenolics), 3.62–4.67 mg QE/g (total flavonoids), 3.63–6.29 mg/g (tannins), 3.66–4.31% (phytate), 8.92–12.11 µg/g (total xanthophylls), 2.42–2.89 µg/g (total β-carotene), and 3.17–3.77 µg/g (total provitamin A carotenoids). Extracts of the maize hybrids scavenged DPPH (SC50: 9.07–26.35 mg/mL) and ABTS•+ (2.65–7.68 TEAC mmol/g), reduced Fe3+ to Fe2+ (0.25 ± 0.64–0.43 ± 0.01 mg GAE/g), and inhibited α-amylase and α-glucosidase, with IC50 ranges of 26.28–52.55 mg/mL and 47.72–63.98 mg/mL, respectively. Among the six clones of the maize hybrids, AS1828-9 had the highest (p < 0.05) levels of tannins and phytate and the strongest antioxidant and starch-hydrolyzing enzymes inhibitory activities. Significant correlations were observed between total phenolics and the following: ABTS•+ (p < 0.01, r = 0.757), DPPH SC50 (p < 0.01, r = −0.867), reducing power (p < 0.05, r = 0.633), α-amylase IC50 (p < 0.01, r = −0.836) and α-glucosidase IC50 (p < 0.05, r = −0.582). Hence, the Striga-resistant yellow-orange maize hybrids (especially AS1828-9) may be beneficial for alleviating oxidative stress and postprandial hyperglycemia.  相似文献   

18.
This study investigated structural changes in β-casein as a function of temperature (4 and 20 °C) and pH (5.9 and 7.0). For this purpose, nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopy were used, in conjunction with chemometric analysis. Both temperature and pH had strongly affected the secondary structure of β-casein, with most affected regions involving random coils and α-helical structures. The α-helical structures showed great pH sensitivity by decreasing at 20 °C and diminishing completely at 4 °C when pH was increased from 5.9 to 7.0. The decrease in α-helix was likely related to the greater presence of random coils at pH 7.0, which was not observed at pH 5.9 at either temperature. The changes in secondary structure components were linked to decreased hydrophobic interactions at lower temperature and increasing pH. The most prominent change of the α-helix took place when the pH was adjusted to 7.0 and the temperature set at 4 °C, which confirms the disruption of the hydrogen bonds and weakening of hydrophobic interactions in the system. The findings can assist in establishing the structural behaviour of the β-casein under conditions that apply as important for solubility and production of β-casein.  相似文献   

19.
Mussel production generates losses and waste since their commercialisation must be aligned with target market criteria. Since mussels are rich in proteins, their meat can be explored as a source of bioactive hydrolysates. Thus, the main objective of this study was to establish the optimal production conditions through two Box–Behnken designs to produce, by enzymatic hydrolysis (using subtilisin and corolase), hydrolysates rich in proteins and with bioactive properties. The factorial design allowed for the evaluation of the effects of three factors (hydrolysis temperature, enzyme ratio, and hydrolysis time) on protein/peptides release as well as antioxidant and anti-hypertensive properties of the hydrolysates. The hydrolysates produced using the optimised conditions using the subtilisin protease showed 45.0 ± 0.38% of protein, antioxidant activity via ORAC method of 485.63 ± 60.65 µmol TE/g of hydrolysate, and an IC50 for the inhibition of ACE of 1.0 ± 0.56 mg of protein/mL. The hydrolysates produced using corolase showed 46.35 ± 1.12% of protein, antioxidant activity of 389.48 ± 0.21 µmol TE/g of hydrolysate, and an IC50 for the inhibition of ACE of 3.7 ± 0.33 mg of protein/mL. Mussel meat losses and waste can be used as a source of hydrolysates rich in peptides with relevant bioactive properties, and showing potential for use as ingredients in different industries, such as food and cosmetics, contributing to a circular economy and reducing world waste.  相似文献   

20.
Flavonols possess several beneficial bioactivities in vitro and in vivo. In this study, two flavonols galangin and quercetin with or without heat treatment (100 °C for 15–30 min) were assessed for their anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated rat intestinal epithelial (IEC-6) cells and whether the heat treatment caused activity changes. The flavonol dosages of 2.5–20 μmol/L had no cytotoxicity on the cells but could enhance cell viability (especially using 5 μmol/L flavonol dosage). The flavonols could decrease the production of prostaglandin E2 and three pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α, and simultaneously promote the production of two anti-inflammatory cytokines IL-10 and transforming growth factor-β. The Western-blot results verified that the flavonols could suppress the LPS-induced expression of TLR4 and phosphorylated IκBα and p65, while the molecular docking results also illustrated that the flavonols could bind with TLR4 and NF-κB to yield energy decreases of −(21.9–28.6) kJ/mol. Furthermore, an inhibitor BAY 11-7082 blocked the NF-κB signaling pathway by inhibiting the expression of phosphorylated IκBα/p65 and thus mediated the production of IL-6/IL-10 as the flavonols did, which confirmed the assessed anti-inflammatory effect of the flavonols. Consistently, galangin had higher anti-inflammatory activity than quercetin, while the heated flavonols (especially those with longer heat time) were less active than the unheated counterparts to exert these target anti-inflammatory effects. It is highlighted that the flavonols could antagonize the LPS-caused IEC-6 cells inflammation via suppressing TLR4/NF-κB activation, but heat treatment of the flavonols led to reduced anti-inflammatory efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号