首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of studies performed on biological systems have shown that redox-active metals such as iron and copper as well as other transition metals can undergo redox cycling reactions and produce reactive free radicals termed also reactive oxygen species (ROS) or reactive nitrogen species (RNS). The most representative examples of ROS and RNS are the superoxide anion radical and nitric oxide, respectively, both playing a dual role in biological systems. At low/moderate concentrations of ROS and RNS, they can be involved in many physiological roles such as defense against infectious agents, involvement in a number of cellular signaling pathways and other important biological processes. On the other hand, at high concentrations, ROS and RNS can be important mediators of damage to biomolecules involving DNA, membrane lipids, and proteins. One of the most damaging ROS occurring in biological systems is the hydroxyl radical formed via the decomposition of hydrogen peroxide catalyzed by traces of iron, copper and other metals (the Fenton reaction). The hydroxyl radical is known to react with the DNA molecule, forming 8-OH-Guanine adduct, which is a good biomarker of oxidative stress of an organism and a potential biomarker of carcinogenesis. This review discusses the role of iron and copper in uncontrolled formation of ROS leading to various human diseases such as cancer, cardiovascular disease, and neurological disorders (Alzheimer’s disease and Parkinson’s disease). A discussion is devoted to the various protective antioxidant networks against the deleterious action of free radicals. Metal-chelation therapy, which is a modern pharmacotherapy used to chelate redox-active metals and remove toxic metals from living systems to avoid metal poisoning, is also discussed.  相似文献   

2.
Saraca asoca is an IUCN red-listed tree species that extensively famous in the Ayurvedic medicine field. Saraca asoca (Roxb.) de Wilde belongs to the family Fabaceae, has been used to treat various gynecological disorders, bacterial infections, worm infestations, haemmorhagic dysentery, uterine pain, skin diseases, cancer, circulatory, cardiovascular disorders, and many others. All parts of the Saraca asoca have medicinal values. Numerous antioxidant compounds like flavonoids, catechin, beta-sitosterol, lignin glycosides are present in the bark, leaf, and flower of Saraca asoca plant, which help to stabilize free radicals molecules that are associated with the development of cancer conditions. Currently in the cancer research study field new and more effective modes of natural therapies are recently being analyzed. Traditional medicines have been used for their preventative role against various diseases in the human population. Plant based therapy for cancer prevention is becoming more demanding due to its various unique properties such as natural chemical composition, less expensiveness, naturally available., easily orally administrable, significant chemo-protective activities, nontoxic to normal cells in the body, less side effects compared to other synthetic chemotherapeutic drugs. The chemotherapeutic drugs will be harmful to both cancer and normal cells. Additionally, some common side effects or health consequences like vomiting, nausea, bleeding, hair fall, alopecia, hyperuricemia, thrombocytopenia, bone marrow depression, mucositis are very common after chemotherapeutic drug treatment in cancer. This review paper summarizes the evidences which agree with the fact that flavonoids and other phenolic compounds in Saraca asoca plant possess significant antioxidant activity and an efficient chemopreventive characteristic against different types of cancer. This paper reviews the anticancer activities of Saraca asoca bark and flower and discusses the potential preventive roles of phenolic and flavonoids compounds, present in bark and flower of Saraca asoca in the cancer treatment process.  相似文献   

3.
Tumor hypoxia greatly suppresses the therapeutic efficacy of photodynamic therapy (PDT), mainly because the generation of toxic reactive oxygen species (ROS) in PDT is highly oxygen-dependent. In contrast to ROS, the generation of oxygen-irrelevant free radicals is oxygen-independent. A new therapeutic strategy based on the light-induced generation of free radicals for cancer therapy is reported. Initiator-loaded gold nanocages (AuNCs) as the free-radical generator were synthesized. Under near-infrared light (NIR) irradiation, the plasmonic heating effect of AuNCs can induce the decomposition of the initiator to generate alkyl radicals (R.), which can elevate oxidative-stress (OS) and cause DNA damages in cancer cells, and finally lead to apoptotic cell death under different oxygen tensions. As a proof of concept, this research opens up a new field to use various free radicals for cancer therapy.  相似文献   

4.
This study investigated the in vitro antioxidant and anticancer properties of the Fomitopsis pinicola extract (EMFP). The antioxidant activity of EFMP was analysed via free radical scavenging (DPPH, ABTS and Hydroxyl radicals) assay and a protein oxidation assay. EFMP effectively scavenged free radicals and exhibited remarkable protection against protein oxidation. The proliferation of EMFP-treated HepG2 cells was remarkably decreased. EMFP effectively increased the reactive oxygen species (ROS) production, depleted the mitochondrial membrane potential (MMP) and promoted the apoptosis of HepG2 cells. In addition, EMFP increased the malondialdehyde (MDA) content and reduced the activities of SOD, CAT and GPx in HepG2 cells. Using UPLC-Triple-TOF-MS, 2 phenolic compounds and 14 triterpenes were identified. These compounds may be the primary contributors to the antioxidant and anticancer capacities of EMFP. Together, these findings highlight the possibility of exploiting EMFP for its desired pharmaceutical ingredients.  相似文献   

5.
Tumor hypoxia greatly suppresses the therapeutic efficacy of photodynamic therapy (PDT), mainly because the generation of toxic reactive oxygen species (ROS) in PDT is highly oxygen‐dependent. In contrast to ROS, the generation of oxygen‐irrelevant free radicals is oxygen‐independent. A new therapeutic strategy based on the light‐induced generation of free radicals for cancer therapy is reported. Initiator‐loaded gold nanocages (AuNCs) as the free‐radical generator were synthesized. Under near‐infrared light (NIR) irradiation, the plasmonic heating effect of AuNCs can induce the decomposition of the initiator to generate alkyl radicals (R.), which can elevate oxidative‐stress (OS) and cause DNA damages in cancer cells, and finally lead to apoptotic cell death under different oxygen tensions. As a proof of concept, this research opens up a new field to use various free radicals for cancer therapy.  相似文献   

6.
电刺激是用于细胞内紊乱电活动引起疾病的一类重要治疗方式. 在电刺激过程中是否会诱导细胞内活性氧(ROS)水平的改变, 以及常规抗氧化抑制药物与电刺激治疗同时运用带来的影响, 目前尚未有相关研究. 本文设计了一种具有较好生物相容性的金/银核壳纳米棒表面增强拉曼(SERS)活性探针, 用于电刺激过程中细胞内产生ROS的检测. 将该探针与细胞共孵育, 使其内化入细胞, 对细胞进行不同时间的电刺激, 利用拉曼光谱对SERS探针的信号进行检测. 实验结果表明, 随着电刺激时间的延长, SERS信号减弱, 说明细胞内产生ROS的量明显增加. 该传感机制是利用ROS能刻蚀金/银核壳纳米棒的银壳, 从而使其变薄引起SERS信号减弱. 抗坏血酸(AA)和谷胱甘肽(GSH)两种抗氧化抑制剂类药物与电刺激同时运用时, 可观察到它们会对电刺激过程产生的ROS有清除作用. 该研究发展了一类用于细胞内ROS检测的光谱方法, 也为异常的氧化应激和肿瘤治疗过程中的组合用药提供了建议.  相似文献   

7.
Many cancer cells critically rely on antioxidant systems for cell survival and are vulnerable to further oxidative impairment triggered by agents generating reactive oxygen species (ROS). Therefore, the classical design and development of inhibitors that target antioxidant defense enzymes such as thioredoxin reductase (TrxR) can be a promising anticancer strategy. Herein, it is shown that a gold(I) complex containing an oleanolic acid derivative ( 4 b ) induces apoptosis of ovarian cancer A2780 cells by activating endoplasmic reticulum stress (ERS). It can inhibit TrxR enzyme activity to elevate ROS, mediate ERS and mitochondrial dysfunction, and finally leads to cell cycle arrest and apoptosis of A2780 cells. Notably, this complex inhibits A2780 xenograft tumor growth accompanied by increased ERS level and decreased TrxR activity in tumor tissues.  相似文献   

8.
Polymer nanoparticulate drug delivery systems that respond to reactive oxygen species (ROS) and glutathione (GSH) simultaneously at biologically relevant levels hold great promise to improve the therapeutic efficacy to cancer cells with reduced side effects of chemo drugs. Herein, a novel redox dual‐responsive amphiphilic block copolymer (ABP) that consists of a hydrophilic poly (ethylene oxide) block and a hydrophobic block bearing disulfide linked phenylboronic ester group as pendant is synthesized, and the DOX loaded nanoparticles (BSN‐DOX) based on ABPs with varied hydrophobic block length are fabricated for DOX delivery. The self‐immolative leaving reaction of phenylboronic ester triggered by extracellular ROS and the cleavage of disulfide linkages induced by intracellular GSH both lead to rapid DOX release from BSN‐DOX, resulting in an on‐demand DOX release. Moreover, BSN‐DOX show better tumor inhibition and lower side effects in vivo compared with free drug.  相似文献   

9.
In an attempt to develop an efficient chemotherapeutic agent targeted at malignant cells that express receptors to gonadotropin releasing hormone (GnRH) we coupled [D-Lys6]GnRH covalently to an emodin derivative, i.e. emodic acid (Emo) to yield [D-Lys6(Emo)]GnRH. Emodin is a naturally occurring anthraquinone which is widely used as a laxative and has other versatile biological activities. Physico-chemical studies employing electron paramagnetic resonance and electrochemistry of the conjugate as well as the (Emo) moiety showed that these compounds could be easily reduced either chemically, photochemically or enzymatically to their corresponding semiquinones. In the presence of oxygen the semiquinones generated reactive oxygen species (ROS), mainly superoxide and hydroxyl radicals, which were detected by the spin trapping method. Moreover, upon irradiation with visible light these compounds produced ROS and a highly reactive excited triplet state of Emo, which by itself may cause the oxidation of certain electron acceptors such as amino acids and bases of nucleic acids. Thus, [D-Lys6]GnRH-photosensitizer conjugates may be potentially used for targeted photodynamic chemotherapy aimed at treating cancer cells that carry GnRH receptors. These conjugates may also induce cytotoxicity in the dark similar to common conventional chemotherapeutic agents. The peptidic moiety, [D-Lys6]GnRH, was found to be stable toward highly reactive ROS generated either from enzymatic reduction or upon photoirradiation. The physico-chemical properties of Emo were only marginally influenced by the peptidic [D-Lys6]GnRH carrier.  相似文献   

10.
孙悦  殷学锋  卢敏 《分析化学》2007,35(4):469-473
超氧化物歧化酶(SOD)可用作抗氧化的药物。它能催化并清除细胞内的活性氧组分(ROS),保护细胞免受自由基的氧化破坏。但是由于SOD分子量较大,难以透过细胞膜进入细胞内,显著降低了SOD的药效。本研究用激光共聚焦荧光显微镜拍摄的荧光图像说明,纳米脂质体可介导SOD进入细胞。用芯片毛细管电泳激光诱导荧光分析法(MCE-LIF)测定单细胞中ROS和谷胱甘肽(GSH)的荧光信号强度,评估了用脂质体包裹的SOD与细胞作用的抗氧化效果。用脂质体包裹的SOD与肝癌细胞共培养2h,与直接用SOD作用于肝癌细胞相比较,细胞内ROS明显降低,GSH明显提高。实验结果说明,用脂质体包裹SOD是一种减低细胞内氧化应激的有效给药途径。  相似文献   

11.
1 Introduction In recent years, the effects of reactive oxygen species(ROS) generated in the course of biological metabolism, such as superoxide(O_2~(-.)), hydrogen peroxide(H_2O_2), hydroxyl radical(HO~.) and singlet oxygen(~1O_2) on the human health have received more attention due to their vital roles in physiological functions. Normally, antioxidant molecules, superoxide dismutase and catalase in biological organism can scavenge excessive free radicals by a series of chemical reactions to keep the cells in a state of redox homeostasis[1].  相似文献   

12.
Lysophosphatidic acid (LPA) induced apoptosis in primary rat cerebellar granule cells, which was characterized morphologically by chromatin condensation and the formation of apoptotic bodies. With redox-sensitive fluorescence probes DCFH-DA and DHR123, the formation of endogenous reactive oxygen species (ROS) inside cells during the apoptosis process was monitored by laser confocal scanning microscopy (LCSM). Pretreatment with the antioxidant tetramethylpyrazine (TMP) could effectively inhibit the formation of endogenous ROS and protect neurons from apoptosis. The results suggest that ROS might be involved in LPA-induced apoptosis in neurons.  相似文献   

13.
Mitochondrial membrane potential is more negative in cancer cells than in normal cells, allowing cancer targeting by delocalized lipophilic cations (DLCs). However, as the difference is rather small, these drugs affect also normal cells. Now a concept of pro‐DLCs is proposed based on an N‐alkylaminoferrocene structure. These prodrugs are activated by the reaction with reactive oxygen species (ROS) forming ferrocenium‐based DLCs. Since ROS are overproduced in cancer, the high‐efficiency cancer‐cell‐specific targeting of mitochondria could be achieved as demonstrated by fluorescence microscopy in combination with two fluorogenic pro‐DLCs in vitro and in vivo. We prepared a conjugate of another pro‐DLC with a clinically approved drug carboplatin and confirmed that its accumulation in mitochondria was higher than that of the free drug. This was reflected in the substantially higher anticancer effect of the conjugate.  相似文献   

14.
UVA radiation (315-400 nm), which constitutes ca 95% of the UV irradiation in natural sunlight reaching earth surface, is a major environmental risk factor associated with human skin cancer pathogenesis. UVA is an oxidizing agent that causes significant damage to cellular components through the release of reactive oxygen species (ROS) and leads to photoaging and photocarcinogenesis. Here we investigate the effect of silibinin, the flavonolignan from Silybum marianum, on UVA-induced ROS and cell death in human keratinocyte cell line HaCaT. In addition, the effect of silibinin on UVA-induced intracellular ROS-mediated endoplasmic reticulum (ER) stress was also analyzed. UVA irradiation resulted in ROS production and apoptosis in HaCaT cells in a dose-dependent manner, and the ROS levels and apoptotic index were found to be elevated significantly when the cells were treated with 75 μmsilibinin for 2 h before UVA exposure. When the cells were pretreated with 10 mmN-acetyl cysteine, the enhancement of UVA-induced apoptosis by silibinin was compromised. Furthermore, we found that silibinin enhances ER stress-mediated apoptosis in HaCaT cells by increasing the expression of CHOP protein. These results suggest that silibinin may be beneficial in the removal of UVA-damaged cells and the prevention of skin cancer.  相似文献   

15.
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor clinical outcome, and currently no effective targeted therapies are available. Indole compounds have been shown to have potential antitumor activity against various cancer cells. In the present study, we found that new four benzo[f]indole-4,9-dione derivatives reduce TNBC cell viability by reactive oxygen species (ROS) accumulation stress in vitro. Further analyses showed that LACBio1, LACBio2, LACBio3 and LACBio4 exert cytotoxic effects on MDA-MB 231 cancer cell line by inducing the intrinsic apoptosis pathway, activating caspase 9 and Bax/Bcl-2 pathway in vitro. These results provide evidence that these new four benzo[f]indole-4,9-dione derivatives could be potential therapeutic agents against TNBC by promoting ROS stress-mediated apoptosis through intrinsic-pathway caspase activation.  相似文献   

16.
The major concern for anticancer chemotherapeutic agents is the host toxicity. The development of anticancer prodrugs targeting the unique biochemical alterations in cancer cells is an attractive approach to achieve therapeutic activity and selectivity. We designed and synthesized a new type of nitrogen mustard prodrug that can be activated by high level of reactive oxygen species (ROS) found in cancer cells to release the active chemotherapy agent. The activation mechanism was determined by NMR analysis. The activity and selectivity of these prodrugs toward ROS was determined by measuring DNA interstrand cross-links and/or DNA alkylations. These compounds showed 60-90% inhibition toward various cancer cells, while normal lymphocytes were not affected. To the best of our knowledge, this is the first example of H(2)O(2)-activated anticancer prodrugs.  相似文献   

17.
Photodynamic therapy (PDT) is an increasingly popular anticancer treatment that uses photosensitizer, light and tissue oxygen to generate cytotoxic reactive oxygen species (ROS) within illuminated cells. Acting to counteract ROS-mediated damage are various cellular antioxidant pathways. In this study, we combined PDT with specific antioxidant inhibitors to potentiate PDT cytotoxicity in MCF-7 cancer cells. We used disulphonated aluminium phthalocyanine photosensitizer plus various combinations of the antioxidant inhibitors: diethyl-dithiocarbamate (DDC, a Cu/Zn-SOD inhibitor), 2-methoxyestradiol (2-ME, a Mn-SOD inhibitor), l-buthionine sulfoximine (BSO, a glutathione synthesis inhibitor) and 3-amino-1,2,4-triazole (3-AT, a catalase inhibitor). BSO, singly or in combination with other antioxidant inhibitors, significantly potentiated PDT cytotoxicity, corresponding with increased ROS levels and apoptosis. The greatest potentiation of cell death over PDT alone was seen when cells were preincubated for 24 h with 300 μM BSO plus 10 mM 3-AT (1.62-fold potentiation) or 300 μM BSO plus 1 μM 2-ME (1.52-fold), or with a combination of all four inhibitors (300 μM BSO, 10 mM 3-AT, 1 μM 2-ME and 10 μM DDC: 1.4-fold). As many of these inhibitors have already been clinically tested, this work facilitates future in vivo studies.  相似文献   

18.
In this study, the optimum synthetic process of the Pyracantha polysaccharide-iron (PPI) complex was studied via response surface methodology (RSM). Its antioxidant and anti-cancer activities were also investigated. It was demonstrated that the optimal conditions for the synthetic process of the complex were as follows: a pH of 8.9, a reaction temperature of 70 °C and a trisodium citrate:polysaccharide ratio of 1:2. PPI were analysis by UV, FTIR, SEM, CD, XRD, TGA and NMR. PPI was able to scavenge the metal ion, ABTS and free radicals of the superoxide anion, demonstrating its potential antioxidant activity. PPI was found to display cytotoxicity to Skov3 cells, as shown by its ability to induce apoptosis and alter gene expression in Skov3 cells. These findings show than PPI may represent a novel antioxidant and chemotherapeutic drug.  相似文献   

19.
Abstract

Xanthatin is a natural plant bicyclic sesquiterpene lactone extracted from Xanthium plants (Asteraceae). In the present study, we demonstrated for the first time that Xanthatin inhibited cell proliferation and mediated G2/M phase arrest in human colon cancer cells. Xanthatin also activated caspase and mediated apoptosis in these cells. Concomitantly, Xanthatin triggered cell autophagic response. We found down-regulation of X-linked inhibitor of apoptosis protein (XIAP) contribute to the induction of apoptosis and autophagy. Moreover, reactive oxygen species (ROS) production was triggered upon exposure to Xanthatin in colon cancer cells. ROS inhibitor N-acetylcysteine (NAC) significantly reversed Xanthatin-mediated XIAP down-regulation, G2/M phase arrest, apoptosis and autophagosome accumulation. In summary, our findings demonstrated that Xanthatin caused G2/M phase arrest and mediated apoptosis and autophagy through ROS/XIAP in human colon cancer cells. We provided molecular bases for developing Xanthatin as a promising antitumor candidate for colon cancer therapy. Abbreviations ROS reactive oxygen species

DMSO dimethyl sulfoxide

5-FU 5-Fluorouracil

3-MA 3-Methyladenine

DCFH-DA 2’7’-dichlorfluorescein-diacetate

NAC N-acetylcysteine

XIAP X-linked inhibitor of apoptosis protein

  相似文献   

20.
[Pt(cur)(NH3)2](NO3) ( 1 ), a curcumin‐bound cis‐diammineplatinum(II) complex, nicknamed Platicur, as a novel photoactivated chemotherapeutic agent releases photoactive curcumin and an active platinum(II) species upon irradiation with visible light. The hydrolytic instability of free curcumin reduces upon binding to platinum(II). Interactions of 1 with 5′‐GMP and ct‐DNA indicated formation of platinum‐bound DNA adducts upon exposure to visible light (λ=400–700 nm). It showed apoptotic photocytotoxicity in cancer cells (IC50≈15 μM ), thus forming ?OH, while remaining passive in the darkness (IC50>200 μM ). A comet assay and platinum estimation suggest Pt–DNA crosslink formation. The fluorescence microscopic images showed cytosolic localization of curcumin, thus implying possibility of dual action as a chemo‐ and phototherapeutic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号