首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A new type of dispersive liquid–liquid microextraction is used for the determination of doxepin, citalopram, and fluvoxamine in aqueous matrices. This method is based upon the tandem utilization of dispersive liquid–liquid microextraction, and by providing a high sample clean‐up, it efficiently improves the applicability of the method in complicated matrices. For this purpose, in the first step, the analytes contained in an aqueous sample solution (8.0 mL) were extracted into an organic solvent, and then these analytes were simply back‐extracted into an aqueous acceptor phase (50 μL). The overall extraction time was 7 min, and very simple tools were required for this aim. Optimization of the variables affecting the method such as the type and volume of the organic solvent used and effect of ionic strength was carried out to achieve the best extraction efficiency. Under the optimized experimental conditions, tandem dispersive liquid–liquid microextraction with high‐performance liquid chromatography and UV detection showed a good linearity in the range of 10–5000 ng/mL. The limits of detection were in the range of 3–10 ng/mL. The Intra‐day precisions (relative standard deviation) were 9.2, 4.5, and 4.8, and the recoveries were 58.5, 52.9, and 39.3% for citalopram, doxepin, and fluvoxamine, respectively.  相似文献   

2.
Guo L  Lee HK 《Journal of chromatography. A》2011,1218(28):4299-4306
For the first time, an ionic liquid based three-phase liquid-liquid-liquid solvent bar microextraction (IL-LLL-SBME) was developed for the analysis of phenols in seawater samples. The ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]), was used as the intermediary solvent for LLL-SBME, enhancing the extraction efficiency for polar analytes. In the procedure, the analytes were extracted from the aqueous sample into the ionic liquid intermediary and finally, back-extracted into an aqueous acceptor solution in the lumen of the hollow fiber. The porous polypropylene membrane acted as a filter to prevent potential interfering materials from being extracted, and no additional cleanup was required. After extraction, the acceptor solution could be directly injected into a high-performance liquid chromatographic system for analysis. Six phenols, 2-nitrophenol, 4-chlorophenol, 2,3-dichlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol were selected here as model compounds for developing and evaluating the method. The most influential extraction parameters were evaluated, including the ionic liquid, the composition of donor solution and acceptor solution, the extraction time and the extraction temperature, the effect of ionic strength, and the agitation speed. Under the most favorable extraction parameters, the method showed good linearity (from 0.05-50 to 0.5-50 μg/L, depending on the analytes) and repeatability of extractions (RSD below 8.3%, n=5). The proposed method was compared to conventional three-phase LLL-SBME and ionic liquid supported hollow fiber protected three-phase liquid-liquid-liquid microextraction, and showed higher extraction efficiency. The proposed method was demonstrated to be a simple, fast, and efficient method for the analysis of phenols from environmental water samples.  相似文献   

3.
Electromembrane extraction (EME) coupled with high performance liquid chromatography and ultraviolet detection was developed for determination of amphetamine-type stimulants in human urine samples. Amphetamines migrated from 3 mL of different human urine matrices, through a thin layer of 2-nitrophenyl octyl ether (NPOE) containing 15% tris-(2-ethylhexyl) phosphate (TEHP) immobilized in the pores of a porous hollow fiber, and into a 15 μL acidic aqueous acceptor solution present inside the lumen of the fiber. Equilibrium extraction conditions were obtained after 7 min of operation. Experimental design and response surface methodology (RSM) were used for optimization of EME parameters. Under optimal conditions, amphetamines were effectively extracted with recoveries in the range of 54-70%, which corresponded to preconcentration factors in the range of 108-140. The calibration curves were investigated in the range of 0-7 μg mL(-1) and good linearity was achieved with a coefficient of estimation better than 0.991. Detection limits and inter-day precision (n=3) were less than 0.01 μg mL(-1) and 11.2%, respectively.  相似文献   

4.
A new analytical procedure using a hollow fiber supported liquid membrane (HFSLM) has been developed for the simultaneous determination of pesticide residues in vegetables by liquid chromatography (LC) coupled with electrospray mass spectrometry (MS). The extraction technique requires minimal sample preparation and solvent consumption. Optimum extraction conditions have been evaluated with respect to sample pH, ionic strength, liquid membrane composition, extraction time, stirring rate and acceptor composition. The extraction method has been validated for matrices such as cucumber, tomato and pepper, indicating that cucumber can be selected as representative matrix for routine analysis of these food commodities. Linear ranges of pesticides in vegetable samples were 10 to 200 microg/kg, and the repeatability of the method was less than 20% for the lowest calibration point. The limits of detection ranged from 0.06 to 2.7 microg/kg and the limits of quantification from 0.2 to 9.0 microg/kg, which were low enough to determine the pesticide residues at concentrations below or equal to the maximum residue levels (MRLs) specified by European Union. The method was finally applied to the determination of more than 20 pesticides in market vegetable samples and the concentrations found in these samples were always lower than the MRLs. This new approach can be considered as a powerful alternative to the traditional extraction techniques.  相似文献   

5.
A liquid‐phase microextraction coupled with LC method has been developed for the determination of organophosphorus pesticides (methidation, quinalphos and profenofos) in drinking water samples. In this method, a small amount (3 μL) of isooctane as the acceptor phase was introduced continually to fill‐up the channel of a 1.5 cm polypropylene hollow fiber using a microsyringe while the hollow fiber was immersed in an aqueous donor solution. A portion of the acceptor phase (ca. 0.4 μL) was first introduced into the hollow fiber and additional amounts (ca. 0.2 μL) of the acceptor phase were introduced to replenish at intervals of 3 min until set end of extraction (40 min). After extraction, the acceptor phase was withdrawn and transferred into a 2 mL vial for a drying step prior to injection into a LC system. Parameters that affect the extraction efficiency were studied including the organic solvent, length of fiber, volume of acceptor and donor phase, stirring rate, extraction time, and effect of salting out. The proposed method provided good enrichment factors of up to 189.50, with RSD ranging from 0.10 to 0.29%, analyte recoveries of over 79.80% and good linearity ranging from 10.0 to 1.25 mg/L. The LOD ranged from 2.86 to 82.66 μg/L. This method was applied successfully to the determination of organophosphorus pesticides in selected drinking water samples.  相似文献   

6.
A new method for the determination of four sulfonylurea herbicides (metsulfuron-methyl, chlorsulfuron, bensulfuron-methyl and chlorimuron-ethyl) in water samples was developed by dispersive liquid–liquid microextraction coupled with high performance liquid chromatography-diode array detector. Parameters that affect the extraction efficiency, such as the kind and volume of the extraction and disperser solvent, extraction time and salt addition, were investigated and optimised. Under the optimum conditions, the enrichment factors were in the range between 102 and 216. The linearity of the method was obtained in the range of 1.0–100 ng mL?1 with the correlation coefficients (r) ranging from 0.9982 to 0.9995. The method detection limits were 0.2–0.3 ng mL?1. The proposed method has been successfully applied to the analysis of target sulfonylurea herbicides in river, stream and well water samples with satisfactory results.  相似文献   

7.
Opium determination is of great importance from toxicological and pharmaceutical standpoints. In present work, electromembrane extraction (EME) coupled with high-performance liquid chromatography (HPLC) and ultraviolet (UV) detection was developed for determination of thebaine as a natural alkaloid, in different matrices containing water, urine, poppy capsule, street heroine, and codeine tablet. Thebaine migrated from 3 mL of sample solutions, through a thin layer of 2-nitrophenyl octyl ether (NPOE) immobilized in the pores of a porous hollow fiber, and into a 15 μL acidic aqueous acceptor solution present inside the lumen of the fiber. The variables of interest, such as chemical composition of the organic liquid membrane, stirring speed, extraction time and voltage, pH of donor and acceptor phases and salt effect in the EME process were optimized. Under optimal conditions, thebaine was effectively extracted from different matrices with recoveries in the range of 45–55%, which corresponded to preconcentration factors in the range of 90–110. Good linearity was achieved for calibration curves with a coefficient of estimation higher than 0.997. Detection limits and intra-day precision (n = 3) were less than 15 μg L−1 and 8.9%, respectively.  相似文献   

8.
A simple and efficient hollow fiber liquid‐phase microextraction (HF‐LPME) technique in conjunction with high‐performance liquid chromatography is presented for extraction and quantitative determination of aristolochic acid I in human urine samples. Several parameters influencing the efficiency of HF‐LPME were investigated and optimized, including extraction solvent, stirring rate, extraction time, pH of donor phase and acceptor phase. Excellent sample clean‐up was observed and good linearity with coefficient of 0.9999 was obtained in the range of 15.4–960 µg/L. This method provided a 230‐fold enrichment factor and good repeatability with relative standard deviations (RSD) lower than 6.0%. The limit of detection value for the analyte in urine sample was 0.01 µg/L at a signal‐to‐noise ratio of 3. The extraction recovery from urine samples was 61.8% with an RSD of 9.71%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
For the first time, electromembrane extraction combined with liquid chromatography and tandem mass spectrometry was applied for the determination of urinary benzene, toluene, ethylbenzene, and xylene metabolites. S‐Phenylmercapturic acid, hippuric acid, phenylglyoxylic acid, and methylhippuric acid isomers were extracted from human urine through a supported liquid membrane consisting of 1‐octanol into an alkaline acceptor solution filling the inside of a hollow fiber by application of an electric field. Various extraction factors were investigated and optimized using response surface methodology, the statistical method. The optimum conditions were established to be 300 V applied voltage, 15 min extraction time, 1500 rpm stirring speed, and 5 mM ammonium acetate (pH 10.2) acceptor solution. The method was validated with respect to selectivity, linearity, accuracy, precision, limit of detection, limit of quantification, recovery, and reproducibility. The results showed good linearity (r2 > 0.995), precision, and accuracy. The extract recoveries were 52.8–79.0%. Finally, we applied this method to real samples and successfully measured benzene, toluene, ethylbenzene, and xylene metabolites.  相似文献   

10.
An easy and rapid hollow-fibre supported liquid membrane method (HFSLM) has been developed to extract and determinate the total concentration of four dinitrophenols in environmental water at ng L(-1) level. This extraction method provides a high selectivity, short extraction time and very low cost for real samples. It is a three-phase system, aqueous-organic-aqueous, where the organic solvent is held into the fibre pores, being in contact with the two other phases. The organic phase is formed by two different organic solvents, with two different polarities, n-undecane and toluene (1:1). The optimization step was performed using a three-variable Doehler design, involving three factors, stirring speed, fibre length and sample volume. The organic phase composition, as well as the pH of the acceptor and donor phases was also optimized. The extraction equilibrium was reached after 30 min, after which essentially the total amount (90-80%) of the four dinitrophenolic compounds were extracted from the sample. Better repeatability and reproducibility at the expense of lower enrichment factors was obtained compared with other methods, employing incomplete extraction during a fixed time. The matrix effect was tested by performing extractions from leachate water and river water. This method is linear in the range 0.1-100 microgL(-1) in different matrices, with detection limit around 100 ng L(-1), after extraction of 6 mL of sample and using high performance liquid chromatography for final analysis.  相似文献   

11.
A possibility of a combination of supported liquid membrane (SLM) and solid-phase extraction (SPE) for the determination of atrazine at microgram level in different type of fruit juices is presented. In comparison to SPE extraction from juice samples, the application of SLM-SPE enrichment provides much cleaner extracts and the possibility of lowering the limit of detection as low as 30 microg/l. However, it was also shown that by appropriate manipulation of SLM extraction conditions mainly flow-rate of donor phase and volume ratio between donor and acceptor phase, the level of detection can be further decreased to 10 microg/l. The results suggest that the application of SLM extraction prior to SPE is an alternative method for atrazine enrichment from complicated liquid matrices and could be used as routine method for the clean-up of such samples.  相似文献   

12.
A new molecularly imprinted solid-phase extraction (MISPE) procedure combined with liquid chromatography was developed for the simultaneous selective extraction and determination of ofloxacin (OFL) and lomefloxacin (LOM) in chicken muscle samples. The water-compatible molecularly imprinted microspheres (MIMs) were synthesized by aqueous suspension polymerization using 2-hydroxy-3-naphthoic acid and 1-methylpiperazine as mimic templates. The MIMs applied as selective sorbents in SPE method showed high selectivity and affinity to OFL and LOM in complex biological matrices. Good linearity was obtained in a range of 0.025-2.0 μg/g, and the average recoveries of OFL and LOM at three spiked levels ranged from 94.4 to 96.9%, respectively, with the relative standard deviation ≤4.7%. The developed MISPE-HPLC method was successfully applied to the isolation of OFL and LOM in chicken muscles, which demonstrated the potential ability of the novel MIMs for selective extraction of fluoroquinolones in biological samples.  相似文献   

13.
A hollow fiber‐based liquid phase microextraction strategy combined with high‐performance liquid chromatography was evaluated for the quantitative determination of trimetazidine in human plasma. Trimetazidine was extracted from a 2.1 mL basified plasma sample (donor phase) into the organic solvent (n‐octanol) impregnated in the pores of a hollow fiber and then extracted into an acidic solution (acceptor phase) inside the lumen of the hollow fiber. The result showed that transport of drugs from alkaline sample solution into 0.5 m HCl occurred efficiently when 25 μL of 250 mm sodium 1‐octanesulfonate was added into the donor phase. Several parameters influencing the efficiency of the method, such as the nature of organic solvent used to impregnate the membrane, compositions of donor phase and acceptor phase, type and concentration of carrier, extraction time, stirring rate and salt concentration, were investigated and optimized. Under the optimal conditions, the calibration curves were obtained in the range of 5–200 ng/mL with reasonable linearity (r > 0.9980). The method was successfully applied to determine the concentration of trimetazidine in human plasma. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
15.
A highly sensitive method based on solid‐phase extraction and ultra high performance liquid chromatography with electrospray tandem mass spectrometry has been developed for simultaneous determination of five iodinated X‐ray contrast media in environmental water samples. Various solid‐phase extraction cartridges have been evaluated and a combination of LiChrolute EN and ENVI‐Carb solid phase extraction cartridges was selected for sample enrichment. The method was comprehensively validated on ground water, tap water, surface water, drinking water, and waste water by the conventional procedures: linearity, method detection limits, accuracy and precision, matrix effects. Good linearity (R2 > 0.999), low detection limits (0.4–8.1 ng/L), satisfactory recoveries (55.1–109.5%) and precision (0.8–10.0% for intra‐day precisions and 0.6–16.5% for inter‐day precisions) were obtained for all the target compounds. Iopamidol, iohexol, and diatrizoate in some matrices were affected by matrix effects, which were slightly eased by using the isotope‐labeled internal standard. The developed method was successfully applied for real samples collected in Shanghai, China, with detected concentrations up to 2200 ± 200 and 9000 ± 1000 ng/L for iohexol and iopamidol, respectively.  相似文献   

16.
A rapid and simple microextraction method with a high sample clean-up, termed as tandem air-agitated liquid–liquid microextraction (TAALLME), is described. This method is based upon the tandem implementation of the air-agitated liquid–liquid microextraction (AALLME), and this approach improves the applicability of the dispersive liquid–liquid microextraction (DLLME) methods in complicated matrices. With very simple tools, the three non-steroidal anti-inflammatory drugs diclofenac, ibuprofen, and mefenamic acid were efficiently extracted, with an overall extraction time of 7 min. By performing the first AALLME, these acidic analytes, contained in an aqueous sample solution (donor phase, 8.0 mL), were extracted into the organic solvent (1,2-dichloroethane, 37 μL), and their simple back-extraction into the aqueous acceptor solution (pH, 10.01, 51 μL) was obtained in 2 min by a second implementation of AALLME. Response surface methodology (RSM) was used for optimization of the experimental parameters. The pH values 2.94 and 10.01 were obtained for the donor and acceptor phases, respectively, and the volumes 99.5 and 51 μL were obtained for the organic solvent and the acceptor phase, respectively, as the optimal extraction conditions. Under the optimized conditions, tandem AALLME-HPLC-UV provided a good linearity in the range of 0.5–4000 ng mL−1, limits of detection (0.1–0.3 ng mL−1), extraction repeatabilities (relative standard deviations (RSDs) below 7.7%, n = 5), and the enrichment factors (EFs) of 80–104. Finally, the applicability of the proposed method was evaluated by the extraction and determination of the drugs under study in the wastewater and human plasma samples.  相似文献   

17.
A method for sample preparation of methoxy-s-triazine herbicides using supported liquid membrane extraction has been developed. The analytes were selectively extracted from the donor solution of pH 7.0 into a porous polytetrafluoroethylene (PTFE) membrane impregnated with di-n-hexyl ether. After diffusion through the hydrophobic membrane the analytes were irreversibly trapped in the acidic acceptor phase of pH 1.0. The donor waste was monitored for estimating the amount of sample trapped at certain time intervals. Comparison of the selectivity with solid-phase extraction has been performed. A low detection limit, ca. 15 ng/l, has been obtained with liquid membrane extraction.  相似文献   

18.
A method was established for the determination of desipramine in biological samples using liquid–liquid–liquid microextraction followed by in‐syringe derivatization and gas chromatography–nitrogen phosphorus detection. The extraction method was based on the use of two immiscible organic solvents. n‐Dodecane was impregnated in the pores of the hollow fiber and methanol was placed inside the lumen of the fiber as the acceptor phase. Acetic anhydride was used as the reagent for the derivatization of the analyte inside the syringe barrel. Parameters that affect the extraction efficiency (composition of donor and acceptor phase, ionic strength, sample temperature, and extraction time) as well as derivatization efficiency (amount of acetic anhydride and reaction time and temperature) were investigated. The limit of detection was 0.02 μg/L with intra and interday RSDs of 2.6 and 7.7%, respectively. The linearity of the method was in the range of 0.2–20 μg/L (r2 = 0.9986). The method was successfully applied to determine desipramine in human plasma and urine.  相似文献   

19.
Application of hollow fiber-based electromembrane extraction was studied for extraction and quantification of phenytoin from exhaled breath condensate (EBC). Phenytoin is extracted from EBC through a supported liquid membrane consisting of 1-octanol impregnated in the walls of a hollow fiber, and into an alkaline aqueous acceptor solution inside the lumen of the fiber. Under the obtained conditions of electromembrane extraction, that is, the extraction time of 15 min, stirring speed of 750 rpm, donor phase pH at 11.0, acceptor pH at 13.0, and an applied voltage of 15 V across the supported liquid membrane, an enrichment factor of 102-fold correspond to extraction percent of 25.5% was achieved. Good linearity was obtained over the concentration range of 0.001–0.10 µg/mL (r2 = 0.9992). Limits of detection and quantitation were 0.001 and 0.003 µg/mL, respectively. The proposed method was successfully applied to determine phenytoin from EBC samples of patients receiving the drug. No interfering peaks were detected that indicating excellent selectivity of the method. The intra- and interday precisions (RSDs) were less than 14%.  相似文献   

20.
Summary Supercritical fluid extraction (SFE) of liquid matrices is difficult and requires special instrumentation. An alternative is to load the liquid on a solid support prior to extraction. This procedure yields higher selectivity and can be used as a clean-up step when very complex liquid matrices, such as urine, are to be analyzed. This paper demonstrates the use of various solid supports in order to extract morphinic alkaloids with subcritical fluids (CO2 + polar modifier). Optimization of the procedure with regard to loading conditions, SFE parameters such as pressure, extraction time, flow rate and eluent composition, was carried out with morphinic alkaloids in aqueous solution. As a real-life application, SFE of opiates in urine were tested with two silica bonded phase supports (C18 (polygosil 60-4063, from Macherey-Nagel) and Bond Elut Certify from Analytichem International). Recovery, variation coefficients and linearity are described for each procedure. Bond Elut Certify silica was chosen as the best solid support and SFE is compared with conventional solid phase extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号