首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organic chemistry of hypervalent organoiodine compounds has been an area of unprecedented development. This surge in interest in the use of hypervalent iodine compounds has mainly been owing to their highly selective oxidizing properties, environmentally benign character and commercial availability. Hypervalent iodine reagents have also been used as an alternative to toxic heavy metals, owing to their low toxicity and ease of handling. Hypervalent organoiodine(III) reagents are versatile oxidants that have been successfully employed to extend the scope of selective oxidative transformations of complex organic molecules in synthetic chemistry. This Focus Review concerns the tandem in situ generation and 1,5‐electrocyclization of N‐heteroaryl nitrilimines into fused triazoles. We describe the importance of recently developed hypervalent‐organoiodine(III)‐catalyzed oxidative cyclization reactions, building towards the conclusion that hypervalent iodine chemistry is a promising frontier for oxidative cyclization, in particular of hydrazones, for the synthesis of fused triazoles.  相似文献   

2.
Along with the vigorous development of hypervalent iodine chemistry, water-soluble hypervalent iodine reagents have received considerable attentions in recent years. In order to obtain water-soluble hypervalent iodine reagents, two strategies have been employed including introduction of hydrophilic functional groups onto the phenyl ring and formation of complex of iodosylbenzene with crown ether. And, it is observed that four kinds of hypervalent iodine reagents exhibit more or less solubility in water including hypervalent iodine reagents containing hydrophilic ligands, diaryliodonium salts, oligomeric iodosylbenzene sulfate, and iodylbenzene and its derivatives. In this review, we summarize these water-soluble hypervalent iodine reagents and their broad synthetic applications in aqueous media.  相似文献   

3.
刘丹  贺家豪  张弛 《大学化学》2019,34(2):1-16
近几十年来,有机高价碘化学蓬勃发展,有机高价碘试剂也受到化学合成工作者的广泛关注,关于有机高价碘试剂的反应性研究也获得了迅猛发展。有机高价碘试剂作为绿色、高效、多功能化的氧化剂,通常容易制备且操作简单,与已有的合成方法相比,该类试剂参与的反应表现出了许多独特的优点,并且具有与汞、铬、铅、铊等重金属试剂类似的反应性,但却没有这些试剂所带来的毒性和环境污染问题。本文介绍了有机高价碘化学的起源与发展,高价碘试剂的结构特点与分类,高价碘试剂在有机合成、材料化学及工业合成中的应用。  相似文献   

4.
Herein, unprecedented rhenium‐catalyzed decarboxylative oxytri‐/difluoromethylation and Heck‐type trifluoromethylation of styrenes have been developed by using hypervalent iodine(III) reagents derived from cheap, stable, and easy‐handling fluorinated carboxylic acids. Mechanistic studies revealed a radical decarboxylative trifluoromethylation pathway occurring in these reactions.  相似文献   

5.
Non‐iodinated arenes can be easily and selectively converted into (diacetoxyiodo)arenes in a single step under mild conditions by using iodine triacetates as reagents. The oxidative step is decoupled from the synthesis of hypervalent iodine(III) reagents, which can now be prepared conveniently in a one‐pot synthesis for subsequent reactions without prior purification. The chemistry of iodine triacetates was also expanded to heteroatom ligand exchanges to form novel inorganic hypervalent iodine compounds.  相似文献   

6.
An efficient and reliable electrochemical generator of hypervalent iodine reagents has been developed. In the anodic oxidation of iodoarenes to hypervalent iodine reagents under flow conditions, the use of electricity replaces hazardous and costly chemical oxidants. Unstable hypervalent iodine reagents can be prepared easily and coupled with different substrates to achieve oxidative transformations in high yields. The unstable, electrochemically generated reagents can also easily be transformed into classic bench‐stable hypervalent iodine reagents through ligand exchange. The combination of electrochemical and flow‐chemistry advantages largely improves the ecological footprint of the overall process compared to conventional approaches.  相似文献   

7.
Hypervalent iodine reagents are powerful tools in contemporary organic synthesis. They have found numerous applications in modern oxidative transformations. The unique reactivity of hypervalent iodine allows access to unconventional electrophilic synthons. For example, electrophilic halogenation chemistry has been greatly expanded by the study of various haloiodanes. Cyclic λ3-haloiodanes are versatile reagents which can promote reactions such as halogenations, halocyclizations and oxidations. Their peculiar reactivity sets them apart from traditional sources of electrophilic halogens. Furthermore, they offer a broad range of reactivities which have been exploited in more diversified transformations. This review summarizes the different syntheses and derivatives of these cyclic haloiodanes, their applications and mechanistic insights as well as the relevant computational, structural and kinetic studies.  相似文献   

8.
N?C axially chiral compounds have emerged recently as appealing motifs for drug design. However, the enantioselective synthesis of such molecules is still poorly developed and surprisingly no metal‐catalyzed atroposelective N‐arylations have been described. Herein, we disclose an unprecedented Cu‐catalyzed atroposelective N?C coupling that proceeds at room temperature. Such mild reaction conditions, which are a crucial parameter for atropostability of the newly generated products, are operative thanks to the use of hypervalent iodine reagents as a highly reactive coupling partners. A large panel of the N?C axially chiral compounds was afforded with very high enantioselectivity (up to >99 % ee) and good yields (up to 76 %). Post‐modifications of thus accessed atropisomeric compounds allows further expansion of the diversity of these appealing compounds.  相似文献   

9.
高价碘化物作为一种性能温和、选择性强及环境友好的氧化试剂在有机合成中得到了广泛的应用。近年来,各种不同结构的高价碘试剂和各种新的反应及应用大量涌现出来,使它们的应用领域从传统的醇类氧化扩展到一些结构复杂化合物的合成领域当中。本文以最常用和研究较多的几个高价碘化合物为例,对它们用于有机合成反应,如氧化、加成、取代和重排的最新进展进行了概述,对本研究小组重点研究的五价碘化合物邻羟基苯碘酰与酮类化合物的取代反应和烯烃化合物的加成反应也作了介绍。  相似文献   

10.
Iodine(III) reagents are used in catalytic one‐pot reactions, first as both oxidants and substrates, then as cross‐coupling partners, to afford chiral polyfunctionalized amines. The strategy relies on an initial catalytic auto C(sp3)?H amination of the iodine(III) oxidant, which delivers an amine‐derived iodine(I) product that is subsequently used in palladium‐catalyzed cross‐couplings to afford a variety of useful building blocks with high yields and excellent stereoselectivities. This study demonstrates the concept of self‐amination of the hypervalent iodine reagents, which increases the value of the aryl moiety.  相似文献   

11.
芳香化合物在碘或碘化铵催化作用下的单溴代反应   总被引:1,自引:0,他引:1  
研究了芳香化合物在碘或碘化铵催化作用下的单溴代选择性反应, 该反应是经过有机高价碘中间体进行的. 通过该反应, 富电子芳香化合物在碘或碘化铵催化作用下很容易与溴化钾、 间氯过氧苯甲酸、 对甲苯磺酸和少量苯的混合物发生反应, 常温下短时间内得到产率良好并具有区域选择性的单溴代芳香化合物. 考察了反应条件的影响, 提出了可能的反应机理, 为简单快速合成单溴代芳香化合物提供了新方法.  相似文献   

12.
Direct acyl radical formation of linear aldehydes (RCH2‐CHO) and subsequent hydroacylation with electron‐deficient olefins can be effected with various types of metal and nonmetal catalysts/reagents. In marked contrast, however, no successful reports on the use of branched aldehydes have been made thus far because of their strong tendency of generating alkyl radicals through the facile decarbonylation of acyl radicals. Here, use of a hypervalent iodine(III) catalyst under visible light photolysis allows a mild way of generating acyl radicals from various branched aldehydes, thereby giving the corresponding hydroacylated products almost exclusively. Another characteristic feature of this approach is the catalytic use of hypervalent iodine(III) reagent, which is a rare example on the generation of radicals in hypervalent iodine chemistry.  相似文献   

13.
Direct acyl radical formation of linear aldehydes (RCH2‐CHO) and subsequent hydroacylation with electron‐deficient olefins can be effected with various types of metal and nonmetal catalysts/reagents. In marked contrast, however, no successful reports on the use of branched aldehydes have been made thus far because of their strong tendency of generating alkyl radicals through the facile decarbonylation of acyl radicals. Here, use of a hypervalent iodine(III) catalyst under visible light photolysis allows a mild way of generating acyl radicals from various branched aldehydes, thereby giving the corresponding hydroacylated products almost exclusively. Another characteristic feature of this approach is the catalytic use of hypervalent iodine(III) reagent, which is a rare example on the generation of radicals in hypervalent iodine chemistry.  相似文献   

14.
Hypervalent iodine(III) reagents have been known for over a century, and their reaction profile is still actively investigated. Recent years have seen impressive improvements in the area of alkene difunctionalization reactions, where new methodologies have become available. Especially chiral non‐racemic hypervalent iodine(III) reagents and catalysts have emerged as versatile tools for the realization of important enantioselective transformations.  相似文献   

15.
The field of hypervalent iodine chemistry has been prevalent since 1886. Its journey from obscurity to coming into the limelight has witnessed many effective transformations which have benefited the synthetic community at large. The reactivity of primary amines with hypervalent iodine reagents causes difficulty in synthetic outcome or not feasible due to high exothermicity of amine iodine which is an acid base reaction. This minireview highlights the worthwhile reactivity of hypervalent iodine reagents with aromatic and aliphatic primary amines. Some recent literature has been discussed to make a clear understanding on how such high reactivity of primary amine is controlled by introducing modulation in either substrate or reaction conditions, most of which are carried out under ambient reaction conditions.  相似文献   

16.
A tertiary hydroxy group α to a carboxyl moiety comprises a key structural motif in many bioactive substances. With the herein presented metal‐free rearrangement of imides triggered by hypervalent λ3‐iodane, an easy and selective way to gain access to such a compound class, namely α,α‐disubstituted‐α‐hydroxy carboxylamides, was established. Their additional methylene bromide side chain constitutes a useful handle for rapid diversification, as demonstrated by a series of further functionalizations. Moreover, the in situ formation of an iodine(III) species under the reaction conditions was proven. Our findings clearly corroborate that hypervalent λ3‐benziodoxolones are involved in these organocatalytic reactions.  相似文献   

17.
The imidazo[1,2‐a]pyridines are an important target in organic synthetic chemistry and have attracted critical attention of chemists mainly due to the discovery of the interesting properties exhibited by a great number of imidazo[1,2‐a]pyridine derivatives. Although lots of synthetic methods of imidazo[1,2‐a]pyridines have been developed in the past years, the chemistry community faces continuing challenges to use green reagents, maximize atom economy and enrich the functional group diversity of product. Undoubtedly, with its low cost and lack of environmentally hazardous byproducts, cascade reactions and C?H functionalizations are ideal strategies for this field. In this record we highlight some of our progress toward the goal to synthesis of imidazo[1,2‐a]pyridine derivatives through carbene transformations or C?H functionalizations.  相似文献   

18.
The development of reagents allowing the reversal of the standard reactivity (Umpolung) of small building blocks is an important field of research in chemistry, as it allows increasing the flexibility of organic synthesis. Indoles and pyrroles are ubiquitous heterocycles in natural products and drugs. They are usually functionalized making use of their high nucleophilicity. In contrast, only few methods are based on the use of electrophilic indole and pyrrole synthons, as the needed reagents are highly unstable or can be used only with a very narrow scope. Herein, we report the serendipitous discovery and first use in the C–H functionalization of arenes of IndoleBX and PyrroleBX, new thermally highly stable benziodoxol(on)e hypervalent iodine reagents. IndoleBX and PyrroleBX could be obtained in one step from the corresponding heterocycles and acetoxy benziodoxolone using a Lewis acid catalyst. The mild reactions conditions allowed the introduction of a broad range of functional groups, including ethers, halogens and boronic esters. The new reagents could then be used in the rhodium‐ and ruthenium‐catalyzed C–H heteroarylation of arene rings bearing heterocyclic or benzamide directing groups. Such transformations could not be realized using previously reported C–H functionalization procedures.  相似文献   

19.
First synthesized in 1991, EthynylBenziodoXolones (EBXs) – cyclic hypervalent iodine reagents derived from 2-iodobenzoic acid – are now among the most versatile electrophilic alkynylation reagents. Due to their cyclic structure, these reagents exhibit enhanced stability compared to previously used alkynyl iodonium salts. Over the last decade, both the iodoheterocycle and the arene ring have been extensively modified to fine-tune the reactivity of the reagents, resulting in new analogues such as Ethynylbenziodoxoles (EBxs) or N-heterocyclic reagents. In this article, we have for the first time compiled the structural data available for EBXs and their analogues, focusing especially on X-Ray and NMR data. For selected compounds, molecular electrostatic potentials (MEP) have also been calculated. When considering the tight relationship between structure and reactivity in hypervalent iodine reagents, the collected data is expected to be highly useful for further developments in the field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号