首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sulfur‐resistant methanation of syngas was studied over MoO3–ZrO2 catalysts at 400°C. The MoO3–ZrO2 solid‐solution catalysts were prepared using the solution combustion method by varying MoO3 content and temperature. The 15MoO3–ZrO2 catalyst achieved the highest methanation performance with CO conversion up to 80% at 400°C. The structure of ZrO2 and dispersed MoO3 species was characterized using X‐ray diffraction and transmission electron microscopy. The energy‐dispersive spectrum of the 15MoO3–ZrO2 catalyst showed that the solution combustion method gave well‐dispersed MoO3 particles on the surface of ZrO2. The structure of the catalysts depends on the Mo surface density. It was observed that in the 15MoO3–ZrO2 catalyst the Mo surface density of 4.2 Mo atoms nm?2 approaches the theoretical monolayer capacity of 5 Mo atoms nm?2. The addition of a small amount of MoO3 to ZrO2 led to higher tetragonal content of ZrO2 along with a reduction of particle size. This leads to an efficient catalyst for the low‐temperature CO methanation process.  相似文献   

2.
Titanium silicalite (TS) and TiO2 nanocomposites were prepared by mixing TS and TiO2 with different ratios in ethanol. They were impregnated with 15 wt% Co loading to afford Co‐based catalysts. Fischer–Tropsch synthesis (FTS) performance of these TS–TiO2 nanocomposite‐supported Co‐based catalysts was studied in a fixed‐bed tubular reactor. The results reveal that the Co/TS–TiO2 catalysts have better catalytic performance than Co/TS or Co/TiO2 each with a single support, showing the synergistic effect of the binary TS–TiO2 support. Among the TS–TiO2 nanocomposite‐supported Co‐based catalysts, Co/TS–TiO2‐1 presents the highest activity. These catalysts were characterized using N2 adsorption–desorption measurements, X‐ray diffraction, X‐ray photoelectron spectroscopy, H2 temperature‐programmed reduction, H2 temperature‐programmed desorption and transmission electron microscopy. It was found that the position of the active component has a significant effect on the catalytic activity. In the TS–TiO2 nanocomposites, cobalt oxides located at the new pores developed between TS and TiO2 can exhibit better catalytic activity. Also, a positive relationship is observed between Co dispersion and FTS catalytic performance for all catalysts. The catalytic activity is improved on increasing the dispersion of Co.  相似文献   

3.
Mesoporous nanoparticles composed of γ‐Al2O3 cores and α‐Fe2O3 shells were synthesized in aqueous medium. The surface charge of γ‐Al2O3 helps to form the core–shell nanocrystals. The core–shell structure and formation mechanism have been investigated by wide‐angle XRD, energy‐dispersive X‐ray spectroscopy, and elemental mapping by ultrahigh‐resolution (UHR) TEM and X‐ray photoelectron spectroscopy. The N2 adsorption–desorption isotherm of this core–shell materials, which is of type IV, is characteristic of a mesoporous material having a BET surface area of 385 m2 g?1 and an average pore size of about 3.2 nm. The SEM images revealed that the mesoporosity in this core–shell material is due to self‐aggregation of tiny spherical nanocrystals with sizes of about 15–20 nm. Diffuse‐reflectance UV/Vis spectra, elemental mapping by UHRTEM, and wide‐angle XRD patterns indicate that the materials are composed of aluminum oxide cores and iron oxide shells. These Al2O3@Fe2O3 core–shell nanoparticles act as a heterogeneous Fenton nanocatalyst in the presence of hydrogen peroxide, and show high catalytic efficiency for the one‐pot conversion of cyclohexanone to adipic acid in water. The heterogeneous nature of the catalyst was confirmed by a hot filtration test and analysis of the reaction mixture by atomic absorption spectroscopy. The kinetics of the reaction was monitored by gas chromatography and 1H NMR spectroscopy. The new core–shell catalyst remained in a separate solid phase, which could easily be removed from the reaction mixture by simple filtration and the catalyst reused efficiently.  相似文献   

4.
Selective catalytic reduction (SCR) of NOx with H2 as a reductant is the most promising denitration technology at low temperature. Achieving the conversion of NOx into N2 at ambient temperature not only prolongs the service life of the catalyst, but also provides more freedom for the arrangement of denitration units throughout the flue gas treatment equipment. However, the development of highly efficient, stable, and environmentally benign supported platinum‐based catalysts for H2‐SCR at ambient temperature is still a major challenge. Herein, a 0.5 wt % Pt/ZrO2@C catalyst, which was composed of carbon‐coated octahedral ZrO2 with highly dispersed Pt particles, was prepared by using a new stabilization strategy based on UiO‐66‐NH2 (a zirconium metal–organic framework) as a template. The catalytic performance of this Pt/ZrO2@C in H2‐SCR was tested and confirmed to achieve near 100 % NOx conversion at 90 °C. Also, 70 % N2 selectivity of the catalyst was achieved. The morphology, structure, and porous properties of the as‐synthesized nanocomposites were characterized by using data obtained from field‐emission SEM, TEM, XRD, Raman spectroscopy, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and N2 adsorption–desorption isotherms. The results show that residual carbon formed by pyrolysis treatment is coated on octahedral ZrO2, and effectively prevents the agglomeration of platinum particles on the surface.  相似文献   

5.
Several TiO2 and γ‐Al2O3 supported catalyst systems were prepared by a novel way and characterized by X‐ray diffraction, Raman spectroscopy and BET surface area measurement. The results show: (1) all the samples, including MoO3/TiO2, WO3/TiO2, V2O5/TiO2, FeSO4/γ‐Al2O3, Al2 (SO4)3/γ‐Al2O3, K2CO3/‐Al2O3 and so on, prepared by impregnating TiO2·H2O or pseudo‐boehmite AlO(OH) with the active components then calcining at a high temperature exhibit much larger surface areas than that of pure TiO2 or γ‐Al2O3 calcined at the same temperature; (2) the surface area of the sample increases with the increase in the coverage of active component on the surface of the support; (3) when the content of active component reaches its utmost monolayer dispersion capacity, the surface area of the sample is the largest, and then decreases when the content of active component exceeds its dispersion threshold.  相似文献   

6.
A magnetically separable NiFe2O4@GO–Pd composite (GO = graphene oxide) was successfully prepared by a facile one‐pot hydrothermal strategy. This new kind of hybrid material was fully characterized using powder X‐ray diffraction, Raman spectroscopy, X‐ray photoelectron spectroscopy, transmission electron microscopy and vibrating sample magnetometry. Structural characterizations confirmed the formation of NiFe2O4 and Pd nanocrystals, and the close anchoring between nanoparticles and GO sheets. Additionally, the as‐prepared NiFe2O4@GO–Pd nanocomposite was effectively employed in the palladium‐catalyzed Heck reaction in an ethanol–water system as a green solvent. The catalyst was completely recoverable with the simple application of an external magnetic field and with no obvious loss of catalytic activity even after six repeated cycles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
An effective one‐pot, convenient process for the synthesis of 1‐ and 5‐substituted 1H‐tetrazoles from nitriles and amines is described using1,4‐dihydroxyanthraquinone–copper(II) supported on Fe3O4@SiO2 magnetic porous nanospheres as a novel recyclable catalyst. The application of this catalyst allows the synthesis of a variety of tetrazoles in good to excellent yields. The preparation of the magnetic nanocatalyst with core–shell structure is presented by using nano‐Fe3O4 as the core, tetraethoxysilane as the silica source and poly(vinyl alcohol) as the surfactant, and then Fe3O4@SiO2 was coated with 1,4‐dihydroxyanthraquinone–copper(II) nanoparticles. The new catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, thermogravimetric analysis, vibration sample magnetometry, X‐ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherm analysis and inductively coupled plasma analysis. This new procedure offers several advantages such as short reaction times, excellent yields, operational simplicity, practicability and applicability to various substrates and absence of any tedious workup or purification. In addition, the excellent catalytic performance, thermal stability and separation of the catalyst make it a good heterogeneous system and a useful alternative to other heterogeneous catalysts. Also, the catalyst could be magnetically separated and reused six times without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
NH2SO3H–SiO2/water as a novel catalytic system was used for the synthesis of (α,β‐unsaturated) β‐amino ketones via aza‐Michael reaction at reflux conditions. The methodology was of general applicability and the catalyst exhibited activity up to five cycles. The catalyst was characterized for the first time using FT‐IR, X‐ray diffraction and scanning electron microscopic–energy dispersion analytical X‐ray. The stability of the catalyst was evaluated by differential scanning calorimetry and TGA/differential thermal analysis. High efficiency of the catalyst along with its recycling ability and the rather low loading demonstrated in reactions are the merits of the presented protocol. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Composite Ni–P/nano‐TiO2 coatings were prepared by simultaneous electroless deposition of Ni–P and nano‐TiO2 on a low carbon steel substrate. The deposition was carried out from stirred solutions containing suspended nano‐TiO2 particles. The Ni–P and Ni–P/nano‐TiO2 coatings before and after heat treatment were characterized by X‐ray diffraction, scanning electron microscopy and energy dispersive X‐ray spectroscopy. The micro‐structural morphologies of the coatings significantly varied with the nano‐TiO2 content. The corrosion resistance of as‐plated and heat‐treated Ni–P and Ni–P/nano‐TiO2 coatings was investigated by anodic polarization, Tafel plots and electrochemical impedance spectroscopic (EIS) studies in 3.5% NaCl solution. Ni–P/nano‐TiO2 coating exhibited superior corrosion resistance over Ni–P coating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
An efficient nanocatalyst of ZnO‐supported CuO/Al2O3 (CuO/ZnO/Al2O3 nanocatalyst) was prepared by the co‐precipitation method and characterized by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray powder diffraction and Brunauer–Emmett–Teller surface area analysis. CuO/ZnO/Al2O3 nanocatalyst proved to be a very efficient catalyst on the synthesis of propargylamines under solvent‐free conditions in high yields. Moreover, the catalyst can be recyclable without reducing catalytic activity up to five times.  相似文献   

11.
Millimeter size γ‐Al2O3 beads were prepared by alginate assisted sol–gel method and grafting organic groups with propyl sulfonic acid and alkyl groups as functionalized γ‐Al2O3 bead catalysts for fructose dehydration to 5‐hydroxymethylfurfural (5‐HMF). Experiment results showed that the porous structure of γ‐Al2O3 beads was favorable to the loading and dispersion of active components, and had an obvious effect on the properties of the catalyst. The lower calcination temperature of γ‐Al2O3 beads increased the specific surface area, the hydrophobicity and the activity of catalysts. Competition between the reaction of alkyl groups and ‐SH groups with surface hydroxyl during the preparation process of the catalyst influenced greatly the acid site densities, hydrophobic properties and activity of the catalyst. With an increase in the alkyl group chain, the hydrophobicity of catalysts increased obviously and the activity of the catalyst was enhanced. The most hydrophobic catalyst C16‐SO3H‐γ‐Al2O3–650°C exhibited the highest yield of 5‐HMF (84%) under the following reaction conditions: reaction medium of dimethylsulfoxide/H2O (V/V, 4:1), catalyst amount of 30 mg, temperature of 110°C and reaction time of 4 hr.  相似文献   

12.
A new epoxidation catalyst has been prepared by grafting a molybdenum(VI)–oxodiperoxo complex containing an oxazine ligand, [MoO(O2)2(phox)], on chloro‐functionalized Fe3O4 nanoparticles. The synthesized heterogeneous catalyst (MoO(O2)2(phox)/Fe3O4 was characterized using powder X‐ray diffraction, scanning and transmission electron microscopies, vibrating sample magnetometry, energy‐dispersive X‐ray analysis, Fourier transform infrared spectroscopy and inductively coupled plasma atomic emission spectroscopy. The immobilized complex gave high product yields and high selectivity for epoxide compared to the corresponding homogeneous one in the epoxidation of various olefins in the presence of tert ‐butyl hydroperoxide at 95°C without any co‐solvent. Also, the heterogeneous catalyst can be recycled without a noticeable change in activity and selectivity.  相似文献   

13.
Catalytic direct dehydrogenation of methanol to formaldehyde was carried out over Ag‐SiO2‐MgO‐Al2O3 catalysts prepared by sol‐gel method. The optimal preparation mass fractions were determined as 8.3% MgO, 16.5% Al2O3 and 20% silver loading. Using this optimum catalyst, excellent activity and selectivity were obtained. The conversion of methanol and the selectivity to formaldehyde both reached 100%, which were much higher than other previously reported silver supported catalysts. Based on combined characterizations, such as X‐ray diffraction (XRD), scanning electronic microscopy (SEM), diffuse reflectance ultraviolet‐visible spectroscopy (UV‐Vis, DRS), nitrogen adsorption at low temperature, temperature programmed desorption of ammonia (NH3‐TPD), desorption of CO2 (CO2‐TPD), etc., the correlation of the catalytic performance to the structural properties of the Ag‐SiO2‐ MgO‐Al2O3 catalyst was discussed in detail. This perfect catalytic performance in the direct dehydrogenation of methanol to formaldehyde without any side‐products is attributed to its unique flower‐like structure with a surface area less than 1 m2/g, and the strong interactions between neutralized support and the nano‐sized Ag particles as active centers.  相似文献   

14.
Ti1–xFexO2 / Fe2O3 (x = 0.3, 0.6, and 0.7 wt%) composites were prepared by solid state reaction of the oxides TiO2 (rutile phase) and Fe2O3 at 550 °C. The following techniques were applied for the characterization of the composites: X‐ray powder diffraction, Mössbauer spectroscopy, SEM, energy dispersive X‐ray spectroscopy and adsorption of nitrogen. The anatase/rutile/hematite ratio and the abundance of Fe3+ were quantified. The results indicate that Fe3+ substituted Ti4+ in the rutile structure and that the α‐Fe2O3 phase was predominantly on the surface of the crystalline Ti1–xFexO2 powders. A substantial increase of the materials density, with respect to rutile, favoured the application of the composites in photocatalytic experiments. The performance of the solids upon the photodegradation of aqueous solutions of carbofuran was evaluated. The Lewis sites created in the composites correlated directly with the photodegradation rate constant of carbofuran and the decrease of the total organic carbon content in the treated solutions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In order to increase the catalyst activity for Fischer–Tropsch synthesis (FTS), the preparation methods of two new catalysts were studied. The chemically identical bimetallic Co–Mn/Al2O3 catalysts were synthesized by different synthetic methods: (a) via thermal decomposition of the complex [Co1.33Mn0.667(C7H3NO4)2(H2O)5].2H2O ( 1 ) and (b) by the impregnation technique. The complex was characterized by the single‐crystal analysis, elemental analysis, and Fourier‐transform infrared (FT‐IR) spectroscopy. Both catalysts were characterized by powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X‐ray spectrometry (EDS), Brunauer–Emmett–Teller (BET) specific surface area, hydrogen temperature‐programmed reduction (H2‐TPR), and H2‐chemisorption. The catalysts' activity was investigated for the Fischer–Tropsch synthesis in a fixed bed microreactor. Higher activity was obtained for the catalyst prepared by thermal decomposition of the inorganic precursor due to its small particle size, superior dispersion, and higher surface area. The results show that the catalyst prepared thermal decomposition has 21% ethylene, 10% propylene, and 50% C5+ selectivity, while methane selectivity of this catalyst is 11% at 250°C. On the other hand, the catalyst obtained by the impregnation method displays 15% ethylene, 8% propylene, 29% C5+, and 29% methane selectivity at the same temperature.  相似文献   

16.
The oxidant‐free dehydrogenation of n‐pentanol over copper based catalysts was investigated in this paper. The effect of metal modification on the activity and stability of the copper catalyst supported on γ‐Al2O3 and La2O3 (Cu/γ‐Al2O3‐La2O3) was clarified and a Cr modified Cu/Al2O3‐La2O3 (Cu‐Cr/γ‐Al2O3‐La2O3) showed the best catalytic performance. The conversion of n‐pentanol was 70.0% and the selectivity for n‐pentanal increased to 97.1% over Cu‐Cr/γ‐Al2O3‐La2O3. X‐ray diffraction and temperature programmed reduction of H2 indicated that the addition of Cr favors the formation and reduction of the copper oxide, and the dispersion of the active Cu0 species, accounting for the good activity and stability of this catalyst. Furthermore, the lower amount of acidic sites in Cu‐Cr/γ‐Al2O3‐La2O3 is suggested to suppress the dehydration in oxidant‐free dehydrogenation of n‐pentanol, accounting for the higher selectivity for n‐pentanal.  相似文献   

17.
A new iron‐based catalyst for carbon monoxide oxidation, as a potential substitute for precious‐metal systems, has been prepared by using a facile impregnation method with iron tris‐acetylacetonate as a precursor on γ‐Al2O3. Light‐off and full conversion temperatures as low as 235 and 278 °C can be reached. However, the catalytic activity strongly depends on the loading; lower loadings perform better than higher ones. The different activities can be explained by variations of the structures formed. The structures are thoroughly characterized by a multimethodic approach by using X‐ray diffraction, Brunauer–Emmett–Teller surface areas, and Mössbauer spectroscopy combined with diffuse reflectance UV/Vis and X‐ray absorption spectroscopy. Consequently, isolated tetrahedrally coordinated Fe3+ centers and phases of AlFeO3 are identified as structural requirements for high activity in the oxidation of carbon monoxide.  相似文献   

18.
Cu(II) immobilized on Fe3O4–diethylenetriamine was designed as a new, inexpensive and efficient heterogeneous catalyst for the synthesis of 2,3‐dihydroquinazolin‐4(1H )‐ones and the oxidative coupling of thiols. The structure of the nanomagnetic catalyst was comprehensively characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, X‐ray diffraction and atomic absorption spectroscopy. Simple preparation of the catalyst from commercially available materials, high catalytic activity, simple operation, high yields, use of green solvents, easy magnetic separation and reusability of the catalyst with unaltered activity make our protocol a green and feasible synthetic strategy.  相似文献   

19.
Magnetic core–shell titanium dioxide nanoparticles (Fe3O4@SiO2@TiO2) were applied for the efficient preparation of 1,2,4,5‐tetrasubstituted imidazole derivatives by the one‐pot multi‐component condensation of benzil with aldehydes, primary amines and ammonium acetate under solvent‐free conditions. The catalyst was synthesized and studied using several techniques including X‐ray diffraction, transmission electron microscopy, field‐emission scanning electron microscopy and energy‐dispersive X‐ray spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Two series of Co and Ni based catalysts supported over commercial (ZrO2, CeO2, and Al2O3) nano supports were investigated for dry reforming of methane. The catalytic activity of both Co and Ni based catalysts were assessed at different reaction temperatures ranging from 500—800 °C; however, for stability the time on stream experiments were conducted at 700 °C for 6 h. Various techniques such as N2 adsorption‐desorption isotherm, temperature‐programmed reduction (H2‐TPR), temperature‐programmed desorption (CO2‐TPD), temperature‐programmed oxidation (TPO), X‐ray diffraction (XRD), thermogravimetric analysis (TGA) were applied for characterization of fresh and spent catalysts. The catalytic activity and stability tests clearly showed that the performance of catalyst is strongly dependent on type of active metal and support. Furthermore, active metal particle size and Lewis basicity are key factors which have significant influence on catalytic performance. The results indicated that Ni supported over nano ZrO2 exhibited highest activity among all tested catalysts due to its unique properties including thermal stability and reducibility. The minimum carbon deposition and thus relatively stable performance was observed in case of Co‐Al catalyst, since this catalyst has shown highest Lewis basicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号