首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A soluble alcohol oxidase (AO) activity was detected in the mycelium of a filamentous fungus strain named YR-1, isolated from petroleum-contaminated soils. AO activity from aerobically grown mycelium was detected in growth media containing the hydrocarbons decane or hexadecane; the enzyme activity exhibited optimum pH for the oxidation of different alcohols (methanol, ethanol, and hexadecanol) similar to that of the corresponding aldehyde. Zymogram analysis conducted with purified fractions from aerobic mycelium of YR-1 strain extracts indicated the existence of two AO enzymes (AO-1 and AO-2). Purified samples of both enzymes analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis indicated the presence of three protein bands with molecular sizes 20, 38, and 46 kDa that could be part of the native enzyme. In samples of both enzymes, the 46-kDa protein gave a positive reaction in immunodetection experiments with antibodies directed against AO from Hansenula polymorpha. The purified AO-2 enzyme oxidized different alcohols, although higher activity was displayed with hexadecanol. K m values obtained for methanol and hexa-decanol indicated a higher affinity for the latter. Analysis of the aminoter-minal sequence of the 46-kDa protein of AO-2 enzyme indicated significant similarity to enzymes involved in the metabolism of biphenyl polychloride compounds.  相似文献   

2.
Proteolytic action on human serum cholinesterase, a tetrameric enzyme, results in a partial disintegration which can be recorded only qualitatively by time-consuming electrophoretic techniques. In this study, a rapid high-performance liquid chromatographic method was used for the separation and determination of the active dissociation products. Separation of the cholinesterase subunits was accomplished by high-performance gel permeation chromatography on a combination of DIOL columns (Zorbax GF 450/GF 250) in 0.2 M phosphate buffer (pH 7.0). Detection and quantification of enzyme activity in the fractionated eluate were carried out using a Flexigem analyser (substrate, butyrylthiocholine). On limited tryptic digestion of partially purified human ChE, up to three peaks of enzyme activity could be identified. Their elution volumes corresponded to apparent molecular masses of 480,000, 270,000 and 120,000, indicating, in addition to the tetrameric holoenzyme, a dimeric and a monomeric form. Quantification of the relative amounts of individual enzyme activity peaks revealed that in the course of degradation, the dimer appeared first, followed by the monomer. This suggests that the first step in the sequence of dissociation is cleavage of the tetramer into a pair of dimers, then further into the monomeric subunit. During the incubation with trypsin, a significant change in the pattern of the different peaks had already occurred when the total enzyme activity was only slightly reduced.  相似文献   

3.
A thermostable D-hydantoinase was isolated from thermophilic Bacillus thermocatenulatus GH-2 and purified to homogeneity by using immunoaffinity chromatography. The molecular mass of the enzyme was determined to be about 230 kDa, and a value of 56 kDa was obtained as a molecular mass of the subunit on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, implying that oligomeric structure of the enzyme is tetrameric. Isoelectric pH of the enzyme was found to be approx 4.3. The enzyme required Mn2+ for the activity and exhibited its highest activity with phenylhydantoin as a substrate. The optimal pH and temperature for catalytic activity were about 7.5 and 65 degrees C, respectively. The half-life of the enzyme was estimated to be about 45 min at 80 degrees C.  相似文献   

4.
The activity of β-glucosidase (βG), total cellulase (FPase) and endoglucanase (CMCase), produced by Aspergillus japonicus URM5620, was studied on solid-state fermentation using castor bean meal as substrate. The effect of the substrate amount, initial moisture, pH, and temperature on cellulase production was studied using a full factorial design (2(4)). The maximum βG, FPase, and CMCase activity was 88.3, 953.4, and 191.6 U/g dry substrate, respectively. The best enzyme activities for all three enzymes were obtained at the same conditions with 5.0 g of substrate, initial moisture 15% at 25 °C and pH 6.0 with 120 h of fermentation. The optimum activity for FPase and CMCase was found at pH 3.0 at an optimum temperature of 50 °C for FPase and of 55 °C for CMCase. The cellulases were stable in the range of pH 3.0-10.0 at 50 °C temperature. The enzyme production optimization demonstrated clearly the impact of the process parameters on the yield of the cellulolytic enzymes.  相似文献   

5.
Directed enzyme prodrug therapy is an extensive area of research in cancer chemotherapy. Although very promising, the current directed approaches are still hampered by inefficient enzyme expression and tumor targeting. This work investigates the viability of using metal nanoparticles as a novel delivery vehicle for prodrug-activating enzymes. Using genetically incorporated amino acid sequences, a nitroreductase from E. coli was directly immobilized onto a 50 nm gold colloid, as confirmed by gel electrophoresis, DLS, and UV-vis spectroscopy. The resulting conjugates showed excellent stability in changing proton and sodium chloride environments, including PBS at 37 °C. Remarkably, the immobilized nitroreductase retained more than 99% activity to the CB1954 prodrug without the need for stabilizers. This work provides the foundation for attaching prodrug-activating enzymes to metal nanoparticles for future use in directed enzyme prodrug therapy.  相似文献   

6.
Naturally occurring enzymes are remarkable biocatalysts with numerous potential applications in industry and medicine. However, many of their catalyst properties often need to be further tailored to meet the specific requirements of a given application. Within this context, directed evolution has emerged over the past decade as a powerful tool for engineering enzymes with new or improved functions. This review summarizes recent advances in applying directed evolution approaches to alter various enzyme properties such as activity, selectivity (enantio- and regio-), substrate specificity, stability, and solubility. Special attention will be paid to the creation of novel enzyme activities and products by directed evolution.  相似文献   

7.
Partially purified RNase T2 (EC 2.7.7.17) from Aspergillus oryzae was bound through its carbohydrate moiety to Concanavalin A-Sepharose. The retention of activity was high, ranging from 70% at low enzyme load to approximately 9% at high enzyme load. Though there was no change in the pH and temperature optima, the pH stability and the Km decreased after immobilization. Compared to the soluble enzyme, the immobilized RNase T2 showed enhanced temperature stability and more resistance to metal ions. Both soluble and immobilized enzymes were stable to 8 M urea. On repeated use, the bound enzyme retained more than 60% of its initial activity after six cycles.  相似文献   

8.
A fungal strain isolated from rotten banana and identified as Aspergillus alliaceus was found capable of producing thermostable extracellular ??-galactosidase enzyme. Optimum cultural conditions for ??-galactosidase production by A. alliaceus were as follows: pH?4.5; temperature, 30?°C; inoculum age, 25?h; and fermentation time, 144?h. Optimum temperature, time, and pH for enzyme substrate reaction were found to be 45?°C, 20?min, and 7.2, respectively, for crude and partially purified enzyme. For immobilized enzyme?Csubstrate reaction, these three variable, temperature, time, and pH were optimized at 50?°C, 40?min, and 7.2, respectively. Glucose was found to inhibit the enzyme activity. The K m values of partially purified and immobilized enzymes were 170 and 210?mM, respectively. Immobilized enzyme retained 43?% of the ??-galactosidase activity of partially purified enzyme. There was no significant loss of activity on storage of immobilized beads at 4?°C for 28?days. Immobilized enzyme retained 90?% of the initial activity after being used four times.  相似文献   

9.
In this study, electrochemical characterisation of glucose oxidation has been carried out in solution and using enzyme polymer electrodes prepared by mutant glucose oxidase (B11-GOx) obtained from directed protein evolution and wild-type enzymes. Higher glucose oxidation currents were obtained from B11-GOx both in solution and polymer electrodes compared to wt-GOx. This demonstrates an improved electrocatalytic activity towards electrochemical oxidation of glucose from the mutant enzyme. The enzyme electrode with B11-GOx also showed a faster electron transfer indicating a better electronic interaction with the polymer mediator. These encouraging results have shown a promising application of enzymes developed by directed evolution tailored for the applications of biosensors and biofuel cells.  相似文献   

10.
Glucose isomerase was immobilized by itself and coimmobilized with cellulase and β-glucosidase using a polyurethane foam (Hypol® FHP 2002). Approximately 50% of the enzyme added was immobilized. The immobilized enzyme was active at pH values as low as 6.8. When immobilized alone, the Km for Mg2+ increased by 5.5fold and the Km for fructose increased 62%. The half-life of the immobilized glucose isomerase was approximately 160 h of continuous hydrolysis, with a substantial (about 35–40%) amount of activity remaining even after 1000 h. When all three enzymes were immobilized together, the system was found capable of functioning at pH 7.0 to produce fructose from both soluble and insoluble cellulose substrates. At this pH, the glucose:fructose ratio was 70:30. The advantageous properties of the foam as a support for enzyme immobilization and the efficiency of the one-step conversion process outlined combine to make this system appear valuable for use in high fructose syrup production.  相似文献   

11.
Glucose ixidase fromPenicillium vitale was immobilized in a 2-hydroxyethyl methacrylate (HEMA) gel containing 0.3 to 2% of methacrylic acid (MAA) or MAA neutralized by allylamine (AA). Depending on the MAA quantity of MAA in the gel, the thermal irreversible inactivation(k in) constants of the immobilized enzymes sharply decrease at gel concentrations higher than 29 to 50% at pH 5.8. A 220- to 250-fold decrease ofk in was observed in 60 to 80% gel. The inactivation rate of enzyme in HEMA gel also decreases considerably under the action of urea. Over the range of pH 5.0 to 9.0 thek in of the native enzyme depends on pH by a degree of 2.1, and of the immobilized enzyme, 0.3 to 0.55. Over the pH range of 5.2 to 5.7,k in of the native and immobilized enzymes are approximate, whereas at pH 8 and over the difference betweenk in values exceeds four orders of magnitude. The activity dependence of the immobilized enzyme on pH is shifted two units to the alkaline region. This shift depends on the ionic strength of the solution. This dependence is best reflected in the high gel concentrations. A mechanism of enzymes stabilization in the concentrated HEMA gel is discussed.  相似文献   

12.
Current understanding on the collagenolytic activity performed by the MMPs assumes some degree of relative motion between the catalytic and the hemopexin-like domains of the enzyme. However, all the crystal structures available for the full-length enzymes display a compact arrangement of the protein domains. Herein, we employ Molecular Dynamics simulations to investigate the structure of the full-length MMP-2 enzyme in aqueous solution. This simulation, together with previous experimental results that have been obtained very recently for the MMP-9 and MMP-12 enzymes, gives strong support to the hypothesis that the interdomain dynamics of the MMP enzymes in solution can result in a manifold of conformations including some structures with a large interdomain separation. The simulation of MMP-2 provides also a detailed molecular picture of the structures involved in the transition from the compact X-ray arrangement to the extended form in solution. Such information could be helpful in future studies of the regulation and/or the collagenolytic activity of these important enzymes.  相似文献   

13.
This paper focuses on the immobilization of a proteolytic enzyme, trypsin, on plasma polymerized allylamine (ppAA) films. The later have been deposited onto silicon substrate by means of radiofrequency glow discharge. The covalent attachment of the enzyme was achieved in three steps: (i) activation of the polymer surface with glutaraldehyde (GA) as a linker, (ii) immobilization of trypsin and (iii) imino groups reduction treatment. The effects and efficiency of each step were investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Fluorescent spectroscopy was used to evaluate the change of the biological activity following the immobilization steps. The results showed that enzyme immobilization on GA-modified substrate increases the enzyme activity by 50% comparing to adsorbed enzymes, while the imino reduction treatment improves the enzyme retention by about 30% comparing to untreated samples. In agreement with XPS and AFM data, UV–vis absorption spectroscopy, used to quantify the amount of immobilized enzyme, showed that allylamine plasma polymer presents a high adsorption yield of trypsin. Although the adsorbed enzymes exhibit a lower activity than that measured for enzymes grafted through GA linkers, the highest catalytic activity obtained was for the enzymes that underwent the three steps of the immobilization process.  相似文献   

14.
The kinetic behavior of the enzyme laccase in solution and immobilized onto carbon platforms using poly(amido amine) (PAMAM) dendrimers has been investigated. The results with the immobilized enzymes have demonstrated that almost ten times more enzyme on the carbon support is required for satisfactory kinetic rates to be achieved. Furthermore, the study as a function of the substrate concentration revealed that the kinetic behavior of the enzyme in solution fits the Michaelis?CMenten model. However, when the enzyme is immobilized onto the carbon surface, the catalyzed reaction follows a particular kinetic behavior with apparent positive cooperativity. The highest activity with laccase (in solution or immobilized) is achieved around pH?4.5, and the substrate conversion rate clearly diminishes with rising pH. The optimum temperature lies around 60?°C. The enzyme displays good catalytic activity in a wide range of pH and temperature values. The stability tests evidenced that there is no appreciable reduction in the enzymatic activity after immobilization within the first 30?days. Taking into account both the kinetic and stability tests, one can infer that the use of PAMAM dendrimers seems to be a very attractive approach for the immobilization of enzymes, as well as a feasible and useful methodology for the anchoring of enzymes with potential application in many biotechnological areas.  相似文献   

15.
Chemical modification of enzymes and immobilization used to be considered as separate ways to improve enzyme properties. This review shows how the coupled use of both tools may greatly improve the final biocatalyst performance. Chemical modification of a previously immobilized enzyme is far simpler and easier to control than the modification of the free enzyme. Moreover, if protein modification is performed to improve its immobilization (enriching the enzyme in reactive groups), the final features of the immobilized enzyme may be greatly improved. Chemical modification may be directed to improve enzyme stability, but also to improve selectivity, specificity, activity, and even cell penetrability. Coupling of immobilization and chemical modification with site‐directed mutagenesis is a powerful instrument to obtain fully controlled modification. Some new ideas such as photoreceptive enzyme modifiers that change their physical properties under UV exposition are discussed.  相似文献   

16.
The immobilization of horseradish peroxidase (HRP) on composite membrane has been investigated. This membrane was prepared by coating nonwoven polyester fabric with chitosan glutamate in the presence of glutraldehyde as a crosslinking agent. The physico-chemical properties of soluble and immobilized HRP were evaluated. The soluble HRP lost 90% of its activity after 4 weeks of storage at 4°C, whereas the immobilized enzyme retained 85% of its original activity at the same time. A reusability study of immobilized HRP showed that the enzyme retained 54% of its activity after 10 cycles of reuse. Soluble and immobilized HRP showed the same pH optima at pH 5.5. The immobilized enzyme had significant stability at different pH values, where it had maximum stability at pH 3.0 and 6.0. The kinetic properties indicated that the immobilized enzyme had more affinity toward substrates than soluble enzyme. The soluble and immobilized enzymes had temperature optima at 30 and 40°C and were stable up to 40 and 50°C, respectively. The stability of HRP against metal ion inactivation was improved after immobilization. Immobilized HRP exhibited high resistance to proteolysis by trypsin. The immobilized HRP was more resistant to inactivation induced by urea, Triton X-100, and organic solvents compared to its soluble counterpart. The immobilized HRP showed very high yield of immobilization and markedly high stabilization against several forms of denaturants that offer potential for several applications.  相似文献   

17.
High-throughput screening (HTS) of enzymatic activity is important for directed evolution-based enzyme engineering. However, substrate and product diffusion can severely compromise these HTS assays. In this issue of Chemistry & Biology, Kintses and coworkers describe a microfluidic platform for the directed evolution of enzymes in droplets that allows for the screening of 10(7) mutants per round of evolution.  相似文献   

18.
HPD-750树脂是中极性大孔吸附树脂,生物相容性好,机械性能稳定,具有较大的比表面积,可用于固定化酶载体材料。本文以HPD-750大孔树脂为载体固定化果胶酶,研究各因素对固定化酶的影响,并采用正交试验对固定化条件进行优化。结果表明,当pH为4.0、固定化温度为45℃、固定化时间为4h、加酶量为0.16g/mL时,固定化酶活力可达5146U/mg。以HPD-750大孔树脂为载体材料制备的固定化酶相较于游离酶具有更好的酸碱稳定性和热稳定性。在循环使用10次后,酶活力依然保留80%以上;4℃储藏25d之后,其酶活力仍保留60%以上。与D311大孔树脂、聚丙烯酰胺和海藻酸钠微球制备的固定化酶相比,HPD-750大孔树脂固定化酶的活性、操作稳定性、机械稳定性和储存稳定性都较好。该结果说明,HPD-750大孔树脂可作为固定化酶较好的载体材料。  相似文献   

19.

In this study, a fungal and two yeast β-galactosidases were immobilized using alginate and chitosan. The biochemical parameters and lactose hydrolysis abilities of immobilized enzymes were analyzed. The pH optima of immobilized fungal β-galactosidases shifted to more acidic pH compared to free enzyme. Remarkably, the optimal temperature of chitosan-entrapped yeast enzyme, Maxilact, increased to 60 °C, which is significantly higher than that of the free Maxilact (40 °C) and other immobilized forms. Chitosan-immobilized A. oryzae β-galactosidase showed improved lactose hydrolysis (95.7%) from milk, compared to the free enzyme (82.7%) in 12 h. Chitosan-immobilized Maxilact was the most efficient in lactose removal from milk (100% lactose hydrolysis in 2 h). The immobilized lactases displayed excellent reusability, and chitosan-immobilized Maxilact hydrolyzed >?95% lactose in milk after five reuses. Compared to free enzymes, the immobilized enzymes are more suitable for cost-effective industrial production of low-lactose milk due to improved thermal activity, lactose hydrolysis efficiencies, and reusability.

  相似文献   

20.
β-Glucosidase was covalently immobilized alone and coimmobilized with cellulase using a hydrophilic polyurethane foam (Hypol®FHP 2002). Immobilization improved the functional properties of the enzymes. When immobilized alone, the Km for cellobiose of β-glucosidase was decreased by 33% and the pH optimum shifted to a slightly more basic value, compared to the free enzyme. Immobilized β-glucosidase was extremely stable (95% of activity remained after 1000 h of continuous use). Coimmobilization of cellulase and β-glucosidase produced a cellulose-hydrolyzing complex with a 2.5-fold greater rate of glucose production for soluble cellulose and a four-fold greater increase for insoluble cellulose, compared to immobilized cellulase alone. The immobilized enzymes showed a broader acceptance of various types of insoluble cellulose substrates than did the free enzymes and showed a long-term (at least 24 h) linear rate of glucose production from microcrystalline cellulose. The pH optimum for the coimmobilized enzymes was 6.0. This method for enzyme immobilization is fast, irreversible, and does not require harsh conditions. The enhanced glucose yields obtained indicate that this method may prove useful for commercial cellulose hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号