首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Benzil bis(semicarbazone), H2L(1), reacts with common rhenium(V) nitrido complexes such as [ReNCl2(PPh3)2] or [ReNCl2(PR2Ph)3] (R = Me, Et) under the release of one semicarbazone unit, cyclization, and formation of stable triazine-3-onato complexes of rhenium(V). The resulting 5,6-diphenyltriazine-3-one, HL (2), acts as monodentate or chelating, monoanionic ligand depending on the reaction conditions applied. Complexes of the compositions [ReNCl(L(2)-kappaN(2),kappaO)(PR2Ph)2] (R = Me, Et) or [ReN(L(2)-kappa N(2),O)(L(2)-kappaN(2))(PPh3)2] were isolated. The N(2) nitrogen atom is the preferred binding site of the monodentate form of the ligand. This contrasts the behavior of the analogous thione HL(3), which preferably coordinates to nitridorhenium(V) centers via the sulfur atom. HL(3) is readily formed by the abstraction of methanol from 5-methoxy-5,6-diphenyl-4,5-dihydro-2H-[1,2,4]triazine-3-thione, H2L(3)OCH 3. In the presence of [ReNCl2(PPh3)2] or [ReNCl2(PR2Ph)3] complexes (R = Me, Et), this reaction yields stable complexes of the composition [ReN(L(3)-kappaN(2),kappaS)(L(3)-kappaS)(PR2Ph)2] (R = Me, Et, Ph) in good yields. Reduction of the metal atom and formation of the seven-coordinate [Re(PPh3)(L(3)-kappaN(2),kappaS)3] was observed during reactions of H2L(3)OCH3 with [ReOCl3(PPh3)2] or [ReO2I(PPh3)2], while no rhenium complexes could be isolated during similar reactions with H2L(1), although cyclization of the bis(semicarbazone) and the formation of H 2L(2)OEt were observed.  相似文献   

2.
Air-stable rhenium(V) nitrido complexes are formed when [ReOCl3(PPh3)2], [NBu4][ReOCl4], or [NBu4][ReNCl4] are treated with an excess of silylated phosphoraneiminates of the composition Me3SiNPPh3 or Ph2P(NSiMe3)CH2PPh2 in CH2Cl2. Complexes of the compositions [ReNCl(Ph2PCH2PPh2NH)2]Cl (1), [ReN(OSiMe3)(Ph2PCH2PPh2NH)2]Cl (2) or [ReNCl2(PPh3)2] (3) were isolated and structurally characterized. The latter compound was also produced during a reaction of the rhenium(III) precursor [ReCl3(PPh3)2(CH3CN)] and Me3SiNPPh3. Nitrogen transfer from the phosphorus to the rhenium atoms and the formation of nitrido ligands were observed in all examples. All products of reactions with an excess of the potentially chelating phosphoraneiminate Me3SiNP(Ph2)CH2PPh2 contain neutral Ph2PCH2PPh2NH ligands. The required protons are supplied by a metal-induced decomposition of the solvent dichloromethane. The Re-N(imine) bond lengths (2.055-2.110 A) indicate single bonds, whereas the N-P bond with lengths between 1.596 A and 1.611 A reflect considerable double bond character. An oxorhenium(V) phosphoraneiminato complex, the dimeric compound [ReOCl2(mu-N-Ph2PCH2PPh2N)]2 (4), is formed during the reaction of [NBu4][ReOCl4] with an equivalent amount of Ph2P(NSiMe3)CH2PPh in dry acetonitrile. The blue neutral complex with two bridging phosphoraneiminato units is stable as a solid and in dry solvents. It decomposes in solution, when traces of water are present. The rhenium-nitrogen distances of 2.028(3) and 2.082(3) A are in the typical range of bridging phosphoraneiminates and an almost symmetric bonding mode. Technetium complexes with phosphoraneimine ligands were isolated from reactions of [NBu4][TcOCl4] with Me3SiNPPh3, and [NBu4][TcNCl4] with Me3SiNP(Ph2)CH2PPh2. Nitrogen transfer and the formation of a five-coordinate nitrido species, [TcNCl2(HNPPh3)2] (5), was observed in the case of the oxo precursor, whereas reduction of the technetium(VI) starting material and the formation of the neutral technetium(V) complex [TcNCl2(Ph2PCH2PPh2NH)] (6) or [TcNCl(Ph2PCH2PPh2NH)2]Cl (7) was observed in the latter case. Both technetium complexes are air stable and X-ray structure determinations show bonding modes of the phosphoraneimines similar to those in the rhenium complexes.  相似文献   

3.
The synthesis and X-ray structural and spectroscopic characterization for LAuC triple bond CAuL x 4CHCl(3) and LAuC triple bond C--C triple bond CAuL x 2CH(2)Cl(2) (1 x 4CHCl(3) and 2 x 2CH(2)Cl(2), respectively; L = PCy(3), tricyclohexylphosphine) are reported. The bridging C(n)(2-) units are structurally characterized as acetylene or diacetylene units, with C triple bond C distances of 1.19(1) and 1.199(8) A for 1 x 4CHCl(3) and 2 x 2CH(2)Cl(2), respectively. An important consequence of bonding to Au(I) for the C(n)(2-) moieties is that the lowest-energy electronic excited states, which are essentially acetylenic (3)(pi pi*) in nature, acquire sufficient allowedness via Au spin-orbit coupling to appear prominently in both electronic absorption and emission spectra. The origin lines for both complexes are well-defined and are observed at 331 and 413 nm for 1 and 2, respectively. Sharp vibronic progressions corresponding to v(C triple bond C) are observed in both emission and absorption spectra. The acetylenic (3)(pi pi) excited state of 2 has a long lifetime (tau(0) = 10.8 mus) in dichloromethane at room temperature and is a powerful reductant (E degrees [Au(2)(+)/Au(2)] < or = -1.85 V vs SSCE).  相似文献   

4.
We carried out laser induced fluorescence and resonance enhanced two-color two-photon ionization spectroscopy of jet-cooled 1-hydroxy-9,10-anthraquinone (1-HAQ). The 0-0 band transition to the lowest electronically excited state was found to be at 461.98 nm (21,646 cm(-1)). A well-resolved vibronic structure was observed up to 1100 cm(-1) above the 0-0 band, followed by a rather broad absorption band in the higher frequency region. Dispersed fluorescence spectra were also obtained. Single vibronic level emissions from the 0-0 band showed Stokes-shifted emission spectra. The peak at 2940 cm(-1) to the red of the origin in the emission spectra was assigned as the OH stretching vibration in the ground state, whose combination bands with the C=O bending and stretching vibrations were also seen in the emission spectra. In contrast to the excitation spectrum, no significant vibronic activity was found for low frequency fundamental vibrations of the ground state in the emission spectrum. The spectral features of the fluorescence excitation and emission spectra indicate that a significant change takes place in the intramolecular hydrogen bonding structure upon transition to the excited state, such as often seen in the excited state proton (or hydrogen) transfer. We suggest that the electronically excited state of interest has a double minimum potential of the 9,10-quinone and the 1,10-quinone forms, the latter of which, the proton-transferred form of 1-HAQ, is lower in energy. On the other hand, ab initio calculations at the B3LYP/6-31G(d,p) level predicted that the electronic ground state has a single minimum potential distorted along the reaction coordinate of tautomerization. The 9,10-quinone form of 1-HAQ is the lowest energy structure in the ground state, with the 1,10-quinone form lying approximately 5000 cm(-1) above it. The intramolecular hydrogen bond of the 9,10-quinone was found to be unusually strong, with an estimated bond energy of approximately 13 kcal/mol (approximately 4500 cm(-1)), probably due to the resonance-assisted nature of the hydrogen bonding involved.  相似文献   

5.
A series of ruthenium complexes having the general form [Ru(bpy)(3-n)(CN-Me-bpy)(n)](PF(6))(2) (where bpy = 2,2'-bipyridine, CN-Me-bpy = 4,4'-dicyano-5,5'-dimethyl-2,2'-bipyridine, and n = 1-3 for complexes 1-3, respectively) have been synthesized and characterized using a variety of steady-state and nanosecond time-resolved spectroscopies. Electrochemical measurements indicate that the CN-Me-bpy ligand is significantly easier to reduce than the unsubstituted bipyridine (on the order of ~500 mV), implying that the lowest energy (3)MLCT (metal-to-ligand charge transfer) state will be associated with the CN-Me-bpy ligand(s) in all three compounds. Comparison of the Huang-Rhys factors derived from spectral fitting analyses of the steady state emission spectra of complexes 1-3 suggests all three compounds are characterized by excited-state geometries that are less distorted relative to their ground states as compared to [Ru(bpy)(3)](PF(6))(2); the effect of the more nested ground- and excited-state potentials is reflected in the unusually high radiative quantum yields (13% (1), 27% (2), and 40% (3)) and long (3)MLCT-state room-temperature lifetimes (1.6 μs, 2.6 μs, and 3.5 μs, respectively) for these compounds. Coupling of the π* system into the CN groups is confirmed by nanosecond step-scan IR spectra which reveal a ~40 cm(-1) bathochromic shift of the CN stretching frequency, indicative of a weaker CN bond in the (3)MLCT excited state relative to the ground state. The fact that the shift is the same for complexes 1-3 is evidence that, in all three complexes, the long-lived excited state is localized on a single CN-Me-bpy ligand rather than being delocalized over multiple ligands.  相似文献   

6.
Mixed-Ligand Complexes of Rhenium IV. The Reaction of [ReNCl2(Me2PhP)3] with Dithiocarbamates. X-Ray Crystal Structures of trans-Chloro-dimethyldithiocarbamato-bis(dimethylphenylphosphine) nitridorhenium(V), [ReN(Cl)(Me2PhP)2(Me2dtc)], and Bis(diethyldithiocarbamato)(dimethylphenylphosphine)nitridorhenium(V), [ReN(Cl)(Me2PhP)(Et2dtc)2] [ReNCl2(Me2PhP)3] reacts with dialkyldithiocarbamates, R2dtc?, under a stepwise ligand exchange. Final products of these reactions are the well-known [ReN(R2dtc)2] bischelates. Intermediatelly, however, complexes of the general formulae [ReN(Cl)(Me2PhP)2(R2dtc)] and [ReN(Me2PhP)(R2dtc)2] can be isolated. Representatives have been structurally characterized. [ReN(Cl)(Me2PhP)2(Me2dtc)] crystallizes monoclinic in the space group P21/c, Z = 4. The dimensions of the unit cell are a = 13.071(3); b = 11.622(1); c = 15.667(3) Å; β = 97.09(1)°. The rhenium atom has a distorted octahedral environment; the Re≡N bond length is 1.71(1) Å. The Re? Cl bond distance is markedly lengthened (2.665(2) Å) as a consequence of the strong trans labilizing influence of the coordinated nitrido ligand. [ReN(Me2PhP)(Et2dtc)2] crystallizes monoclinic in the space group P21/c, Z = 4, a = 17.262(3); b = 14.915(2); c = 9.888(2); β = 76.35(8)°. The equatorial coordination sphere is occupied by one phosphorus atom and three sulphur atoms. One of the dithiocarbamate ligands is coordinated bidentately; the second one with two distinct Re? S bond lengths. The Re? S(4) distance is 2.7983(2) Å which can be discussed as a weak interaction with the metal.  相似文献   

7.
Copper(I) and rhenium(I) complexes [Cu(PPh(3))(2)(dppz-11-COOEt)]BF(4), [Cu(PPh(3))(2)(dppz-11-Br)]BF(4), [Re(CO)(3)Cl(dppz-11-COOEt)] and [Re(CO)(3)Cl(dppz-11-Br)] (dppz-11-COOEt = dipyrido-[3,2a:2',3'c]phenazine-11-carboxylic ethyl ester, dppz-11-Br = 11-bromo-dipyrido[3,2a:2',3'c]-phenazine) have been studied using Raman, resonance Raman, and transient resonance Raman (TR(2)) spectroscopy, in conjunction with computational chemistry. DFT (B3LYP) frequency calculations with a 6-31G(d) basis set for the ligands and copper(I) centers and an effective core potential (LANL2DZ) for rhenium in the rhenium(I) complexes show close agreement with the experimental nonresonance Raman spectra. Modes that are phenazine-based, phenanthroline-based, and delocalized across the entire ligand structure were identified. The nature of the absorbing chromophores at 356 nm for ligands and complexes was established using resonance Raman spectroscopy in concert with vibrational assignments from calculations. This analysis reveals that the dominant chromophore for the complexes measured at 356 nm is ligand-centered (LC), except for [Re(CO)(3)Cl(dppz-11-Br)], which appears to have additional chromophores at this wavelength. Calculations on the reduced complexes, undertaken to model the metal-to-ligand charge transfer (MLCT) excited state, show that the reducing electron occupies a ligand MO that is delocalized across the ligand structure. Resonance Raman spectra (lambda(exc) = 514.5 nm) of the reduced rhenium complexes show a similar spectral pattern to that observed in [Re(CO)(3)Cl(dppz)](*-); the measured bands are therefore attributed to ligand radical anion modes. These bands lie at 1583-1593 cm(-1) for [Re(CO)(3)Cl(dppz-11-COOEt)] and 1611 cm(-1) for [Re(CO)(3)Cl(dppz-11-Br)]. The thermally equilibrated excited states are examined using nanosecond-TR(2) spectroscopy (lambda(exc) = 354.7 nm). The TR(2) spectra of the ligands provide spectral signatures for the (3)LC state. A band at 1382 cm(-1) is identified as a marker for the (3)LC states of both ligands. TR(2) spectra of the copper and rhenium complexes of dppz-11-Br show this (3)LC band, but it is not prominent in the spectra of [Cu(PPh(3))(2)(dppz-11-COOEt)](+) and [Re(CO)(3)Cl(dppz-11-COOEt)]. Calculations suggest that the lowest triplet states of both of the rhenium(I) complexes and [Cu(PPh(3))(2)(dppz-11-Br)](+) are metal-to-ligand charge transfer in nature, but the lowest triplet state of [Cu(PPh(3))(2)(dppz-11-COOEt)](+) appears to be LC in character.  相似文献   

8.
Single-crystal neutron diffraction, inelastic neutron scattering, and density functional calculations provide experimental and theoretical analyses of the nature of the osmium-bound, "elongated" dihydrogen ligands in [Cp*OsH(4)(L)][BF(4)] complexes (L = PPh(3), AsPh(3), or PCy(3)). The PPh(3) and AsPh(3) complexes clearly contain one dihydrogen ligand and two terminal hydrides; the H(2) ligand is transoid to the Lewis base, and the H-H vector connecting the central two hydrogen atoms lies parallel to the Ct-Os-L plane (Ct = centroid of Cp* ring). In contrast, in the PCy(3) complex the H-H vector is perpendicular to the Ct-Os-L plane. Not only the orientation of the central two hydrogen atoms but also the H-H bond length between them depends significantly on the nature of L: the H...H distance determined from neutron diffraction is 1.01(1) and 1.08(1) A for L = PPh(3) and AsPh(3), respectively, but 1.31(3) A for L = PCy(3). Density functional calculations show that there is a delicate balance of electronic and steric influences created by the L ligand that change the molecular geometry (steric interactions between the Cp* and L groups most importantly change the Ct-Os-L angle), changing the relative energy of the Os 5d orbitals, which in turn govern the H-H distance, preferred H-H orientation, and rotational dynamics of the elongated dihydrogen ligand. The geometry of the dihydrogen ligand is further tuned by interactions with the BF(4)(-) counterion. The rotational barrier of the bound H(2) ligand in [Cp*OsH(4)(PPh(3))](+), determined experimentally (3.1 kcal mol(-)(1)) from inelastic neutron scattering experiments, is in reasonable agreement with the B3LYP calculated H(2) rotational barrier (2.5 kcal mol(-)(1)).  相似文献   

9.
本文报道了新铂氢化物PtH(PPh3)(S2CNR2)及trans-PtH(PCy3)2(S2CNR2)的合成与结构鉴定, 它们是由trans-PtHCl(PR3)2(R=Ph, Cy)和NaS2CNR2的反应生成的, 还研究了新铂氢化物与四氯化碳的反应及热重量分析.  相似文献   

10.
Hartl F  Vlcek A 《Inorganic chemistry》1996,35(5):1257-1265
Rhenium and manganese complexes of the 3,5-di-tert-butyl-1,2-benzosemiquinone (DBSQ) ligand, [M(CO)(4)(DBSQ)], fac-[M(CO)(3)(L)(DBSQ)], and cis,trans-[M(CO)(2)(L)(2)(DBSQ)], with a widely varied nature of co-ligand(s) (L = THF, Me(2)CO, MeC(O)Ph, py, NEt(3), Ph(3)PO, SbPh(3), AsPh(3), PCy(3), P(OPh)(3), PPh(3), dppe-p, PPh(2)Et, P(OEt)(3), PEt(3)) were generated in solution and characterized as valence-localized molecules containing the radical-anionic DBSQ ligand bound to Re(I) or Mn(I) metal atoms. This is evidenced by the following. (i) Carbonyl stretching frequencies nu(C&tbd1;O) and average force constants k(av) are typical for Mn(I) or Re(I) carbonyls. (ii) Frequencies of the intra-dioxolene C=O bond stretching vibration, nu(C=O), lie within the 1400-1450 cm(-1) range which is diagnostic for coordinated semiquinones. (iii) EPR spectra indicate a very small spin density on the metal atom (0.2% < a(M)/A(iso) > 2.6%). (iv) Absorption spectra show Re(I) --> DBSQ MLCT electronic transitions characterized by a resonant enhancement of the Raman peaks due to the nu(C&tbd1;O) and intra-DBSQ nu(C=O) vibrations. (iv) Finally, the electrochemical pattern consists of DBSQ/DBQ and DBSQ/DBCat ligand-localized redox couples. All these properties are, in a limited range, dependent on the nature and, especially, the number of co-ligands L, indicating a small delocalization of the singly occupied MO of the DBSQ ligand over the metal atom. The extent of this delocalization may be finely tuned by changing the co-ligands, although in absolute terms, it remains rather limited, and the DBSQ ligand behaves toward Re(I) and Mn(I) as a very weak pi-acceptor only. The changes of the electronic properties of the metal center induced by the co-ligands are mostly compensated by more flexible M --> CO pi back-bonding as is manifested by large variations of the average C&tbd1;O stretching force constant.  相似文献   

11.
The photophysical properties of Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF = tetrahydrofuran, PPh(3) = triphenylphosphine, py = pyridine) were explored upon excitation with visible light. Time-resolved absorption shows that all the complexes possess a long-lived transient (3.5-5.0 micros) assigned as an electronic excited state of the molecules, and they exhibit an optical transition at approximately 760 nm whose position is independent of axial ligand. No emission from the Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF, PPh(3), py) systems was detected, but energy transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to the (3)pipi excited state of perylene is observed. Electron transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to 4,4'-dimethyl viologen (MV(2+)) and chloro-p-benzoquinone (Cl-BQ) takes place with quenching rate constants (k(q)) of 8.0 x 10(6) and 1.2 x 10(6) M(-1) s(-1) in methanol, respectively. A k(q) value of 2 x 10(8) M(-1) s(-1) was measured for the quenching of the excited state of Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) by O(2) in methanol. The observations are consistent with the production of an excited state with excited-state energy, E(00), between 1.34 and 1.77 eV.  相似文献   

12.
A series of mononuclear and binuclear gold(I) complexes containing oligo(o- or m-phenyleneethynylene) (PE) ligands, namely [PhC≡C(C(6)H(4)-1,2-C≡C)(n-1)Au(PCy(3))] (n = 2-4, 4a-c), [μ-{C≡C-(1,2-C(6)H(4)C≡C)(n)}{Au(PCy(3))}(2)] (n = 1-6, 8, 5a-g), [PhC≡C(C(6)H(4)-1,3-C≡C)(n-1)Au(PCy(3))] (n = 2-4, 6a-c), and [μ-{C≡C-(1,3-C(6)H(4)C≡C)(n)}{Au(PCy(3))}(2)] (n = 1, 2, 7a,b), were synthesized and structurally characterized. Extensive spectroscopic measurements have been performed by applying combined methods of femtosecond transient absorption (fs-TA), fs time-resolved fluorescence (fs-TRF), and nanosecond time-resolved emission (ns-TRE) coupled with steady-state absorption and emission spectroscopy at both ambient and low (77 K) temperatures to directly probe the temporal evolution of the excited states and to determine the dynamics and spectral signatures for the involved singlet (S(1)) and triplet (T(1)) excited states. The results reveal that S(1) and T(1) both feature ligand-centered electronic transitions with ππ* character associated with the phenyl and acetylene moieties. The (3)ππ* emission of the PE ligands is switched on by the attachment of [Au(PCy(3))](+) fragment(s) due to the heavy-atom effect. T(1)((3)ππ*) was found to form with nearly unity efficiency through intersystem crossing (ISC) from S(1)((1)ππ*). The ISC time constants were determined to be ~50, 35, and 40 ps for 4b and 6a,b, respectively. Dual emission composed of fluorescence from S(1) and phosphorescence from T(1) were observed for most of the complexes except 5a and 7a, where only phosphorescence was found. The fluorescence at ambient temperature is accounted for by both the short-lived prompt fluorescence (PF) and long-lived delayed fluorescence (DF, lifetime on microsecond time scale). Explicit evidence was presented for a triplet-triplet annihilation mechanism for the generation of DF. Ligand length and substitution-dependent dynamics of T(1) are the key factors governing the dual emission character of the complexes. By extrapolation from the plot of emission energy against the PE chain length of the [Au(PCy(3))](+) complexes with oligo(o-PE) or oligo(m-PE) ligands, the triplet emission energies were estimated to be ~530 and ~470 nm for poly(o-PE) and poly(m-PE), respectively. Additionally, we assign the unusual red shifts of 983 cm(-1) from [PhC≡CAu(PCy(3))] (1) to [μ-{1,3-(C≡C)(2)C(6)H(4)}{Au(PCy(3))}(2)] (7a) and 462 cm(-1) from 7a to [μ(3)-{1,3,5-(C≡C)(3)C(6)H(3)}{Au(PCy(3))}(3)] (8) in the phosphorescence energies to excitonic coupling interactions between the C≡CAu(PCy(3)) arms in the triplet excited states. These complexes, together with those previously reported [Au(PCy(3))](+) complexes containing oligo(p-PE) ligands ( J. Am. Chem. Soc. 2002 , 124 , 14696 - 14706 ), form a collection of oligo(phenyleneethynylene) complexes exhibiting organic triplet emission in solution under ambient conditions. The remarkable feature of these complexes in exhibiting TTA prompted DF in conjunction with high formation efficiency of T(1)((3)ππ*) affords an opportunity for emission spectra to cover a wide range of wavelengths. This may have implication in the development of PE-based molecular materials for future optical applications.  相似文献   

13.
New mixed-valence iron-nickel dithiolates are described that exhibit structures similar to those of mixed-valence diiron dithiolates. The interaction of tricarbonyl salt [(dppe)Ni(pdt)Fe(CO)(3)]BF(4) ([1]BF(4), where dppe = Ph(2)PCH(2)CH(2)PPh(2) and pdt(2-) = -SCH(2)CH(2)CH(2)S-) with P-donor ligands (L) afforded the substituted derivatives [(dppe)Ni(pdt)Fe(CO)(2)L]BF(4) incorporating L = PHCy(2) ([1a]BF(4)), PPh(NEt(2))(2) ([1b]BF(4)), P(NMe(2))(3) ([1c]BF(4)), P(i-Pr)(3) ([1d]BF(4)), and PCy(3) ([1e]BF(4)). The related precursor [(dcpe)Ni(pdt)Fe(CO)(3)]BF(4) ([2]BF(4), where dcpe = Cy(2)PCH(2)CH(2)PCy(2)) gave the more electron-rich family of compounds [(dcpe)Ni(pdt)Fe(CO)(2)L]BF(4) for L = PPh(2)(2-pyridyl) ([2a]BF(4)), PPh(3) ([2b]BF(4)), and PCy(3) ([2c]BF(4)). For bulky and strongly basic monophosphorus ligands, the salts feature distorted coordination geometries at iron: crystallographic analyses of [1e]BF(4) and [2c]BF(4) showed that they adopt "rotated" Fe(I) centers, in which PCy(3) occupies a basal site and one CO ligand partially bridges the Ni and Fe centers. Like the undistorted mixed-valence derivatives, members of the new class of complexes are described as Ni(II)Fe(I) (S = (1)/(2)) systems according to electron paramagnetic resonance spectroscopy, although with attenuated (31)P hyperfine interactions. Density functional theory calculations using the BP86, B3LYP, and PBE0 exchange-correlation functionals agree with the structural and spectroscopic data, suggesting that the spin for [1e](+) is mostly localized in a Fe(I)-centered d(z(2)) orbital, orthogonal to the Fe-P bond. The PCy(3) complexes, rare examples of species featuring "rotated" Fe centers, both structurally and spectroscopically incorporate features from homobimetallic mixed-valence diiron dithiolates. Also, when the NiS(2)Fe core of the [NiFe]-hydrogenase active site is reproduced, the "hybrid models" incorporate key features of the two major classes of hydrogenase. Furthermore, cyclic voltammetry experiments suggest that the highly basic phosphine ligands enable a second oxidation corresponding to the couple [(dxpe)Ni(pdt)Fe(CO)(2)L](+/2+). The resulting unsaturated 32e(-) dications represent the closest approach to modeling the highly electrophilic Ni-SI(a) state. In the case of L = PPh(2) (2-pyridyl), chelation of this ligand accompanies the second oxidation.  相似文献   

14.
We studied the Ir(2)(dimen)(4)(2+) complex with ultrafast transient absorption spectroscopy and density functional theory and concluded that it possesses two singlet ground state isomers in room temperature solution. The molecule can adopt either a paddle wheel or a propeller conformation in solution, where the paddle wheel structure possesses a metal-metal bond of 4.4 ? and a dihedral angle between the quasi-C(4v) planes of 0° and the propeller structure has a metal-metal bond of 3.6 ? and a dihedral angle of 17° when crystallized. Each conformation has a distinct absorption in the visible attributed to a (1)(dσ(z)* → pσ(z)) excitation, with the long eclipsed structure absorbing at 475 nm and the short twisted structure absorbing at 585 nm. We independently pumped at each of these visible transitions to form vibrational wavepackets on the ground and excited state potential energy surfaces, which modulated the ground state bleach and stimulated emission signals, respectively. We found that the ground state wavepacket oscillates with a frequency of 48 cm(-1) when pumping the red peak and 11 cm(-1) when pumping the blue peak. We assign these frequencies to the Ir-Ir symmetric stretch, with the variation in frequency reflecting the variation in metal-metal bond strength in support of our assignment of the blue peak to the longer Ir-Ir bond length conformer and the red peak to the shorter Ir-Ir bond length conformer. When pumping the red peak, we found two modes with frequencies of 80 and 119 cm(-1) in the stimulated emission and only one mode at 75 cm(-1) when pumping the blue peak. We assign the 75-80 cm(-1) frequency to the Ir-Ir stretch and the 119 cm(-1) vibration to the dihedral angle twist in the excited state. The variation in the excited state dynamics does not result from the excitation of different electronic states, but rather from excitation to different Franck-Condon regions of the same electronic excited state potential energy surface. This occurs because of the large difference in ground state molecular structure. DFT calculations support the existence of a single electronic excited state being accessed from two distinct structural isomers with conformations similar to those observed with X-ray crystallography.  相似文献   

15.
The nitridorhenium(V) complexes [ReNCl2(PR2Ph)3] (R = Me, Et) react with the N‐heterocyclic carbenes (NHC) 1,3‐diethyl‐4,5‐dimethylimidazole‐5‐ylidene (LEt) or 1,3,4,5‐tetramethylimidazole‐2‐ylidene (LMe) in absolutely dry THF under complete replacement of the equatorial coordination sphere. The resulting [ReNCl(LR)4]+ complexes (LR = LMe, LEt) are moderately stable as solids and in solution, but decompose in hot methanol under formation of [ReO2(LR)4]+ complexes. With 1,3‐diisopropyl‐4,5‐dimethylimidazole‐5‐ylidene (Li‐Pr), the loss of the nitrido ligand and the formation of a dioxo species is more rapid and no nitridorhenium intermediate could be isolated. The Re‐C bond lengths in [ReNCl(LEt)4]Cl of approximately 2.195Å are relatively long and indicate mainly σ‐bonding in the electron‐deficient d2 system under study. The hydrolysis of the nitrido complexes proceeds via the formation of [ReO3N]2? anions as could be verified by the isolation and structural characterization of the intermediates [{ReN(PMe2Ph)3}{ReO3N}]2 and [{ReN(OH2)(LEt)2}2O][ReO3N].  相似文献   

16.
The reactions of the hydrido compounds [RuHCl(CO)(L)2][L = PiPr3 (1), PCy3 (2)] with HC(triple bond)CR (R = H, Ph, tBu) afforded by insertion of the alkyne into the Ru-H bond the corresponding vinyl complexes [RuCl(CHCHR)(CO)(L)2], 3-8, which upon protonation with HBF4 gave the cationic five-coordinated ruthenium carbenes [RuCl(CHCH2R)(CO)(L)2]BF4, 9-14. Subsequent reactions of the carbene complexes with PR3(R = Me, iPr) and CH3CN led either to deprotonation and re-generation of the vinyl compounds or to cleavage of the ruthenium-carbene bond and the formation of the six-coordinated complexes [RuCl(CO)(CH3CN)2(PiPr3)2]BF4, 17, and [RuH(CO)(CH3CN)2(PiPr3)2]X, 18a,b. The acetato derivative [RuH(2-O2CCH3)(CO)(PCy3)2], 19, also reacted with acetylene and phenylacetylene by insertion to yield the related vinyl complexes [Ru(CHCHR)(kappa2-O2CCH3)(CO)(PCy3)2], 20, 21, of which that with R = H was protonated with HBF4 to yield the corresponding cationic ruthenium carbene 22. With [RuHCl(H2)(PCy3)2], 25, as the starting material, the five-coordinated chloro(hydrido)ruthenium(II) compounds [RuHCl(PCy3)(dppf)], 26(dppf = [Fe(eta5-C5H4PPh2)2]), [RuHCl[Sb(CH2Ph)3](PCy3)2], 27, and [RuHCl(CH3CN)(PCy3)2], 30, were prepared. The reactions of 27 with HCCR (R = H, Ph) gave the hydrido(vinylidene) complexes [RuHCl(CCHR)(PCy3)2], 28 and 29, whereas treatment of 30 with HC(triple bond)CPh afforded the vinyl compound [RuCl(CHCHPh)(CH3CN)(PCy3)2], 31. The molecular structures of 11(R = tBu, L = PiPr3) and 26 were determined crystallographically.  相似文献   

17.
The phenol(+)...Ar(2) complex has been characterized in a supersonic jet by mass analyzed threshold ionization (MATI) spectroscopy via different intermediate intermolecular vibrational states of the first electronically excited state (S(1)). From the spectra recorded via the S(1)0(0) origin and the S(1)β(x) intermolecular vibrational state, the ionization energy (IE) has been determined as 68,288 ± 5 cm(-1), displaying a red shift of 340 cm(-1) from the IE of the phenol(+) monomer. Well-resolved, nearly harmonic vibrational progressions with a fundamental frequency of 10 cm(-1) have been observed in the ion ground state (D(0)) and assigned to the symmetric van der Waals (vdW) bending mode, β(x), along the x axis containing the C-O bond. MATI spectra recorded via the S(1) state involving other higher-lying intermolecular vibrational states (σ(s)(1), β(x)(3), σ(s)(1)β(x)(1), σ(s)(1)β(x)(2)) are characterized by unresolved broad structures.  相似文献   

18.
Cyclometalated osmium complexes with the formulas [Os(ppy) 2(CO) 2] ( 1a, b), [Os(dfppy) 2(CO) 2] ( 2a, b), and [Os(btfppy) 2(CO) 2] ( 3a, b) have been synthesized, for which the chelating chromophores ppyH, dfppyH, and btfppyH denote 2-phenylpyridine, 2-(2,4-difluorophenyl)pyridine, and 2-(2,4-bis(trifluoromethyl)phenyl)pyridine, respectively. The isomers 1a- 3a, possessing an intrinsic C 2 rotational axis as determined by single-crystal X-ray diffraction analysis, underwent slow isomerization in solution at elevated temperature, giving the respective thermodynamic products 1b- 3b, which showed a distinctive coordination arrangement produced by a 180 degrees rotation of one cyclometalated ligand around the Os(II) metal center. In contrast to the case for 1a, b and 2a, which are inert to substitution, complexes 2b and 3b (or 3a) readily react with PPh 2Me to afford the products [Os(dfppy) 2(CO)(PPh 2Me)] ( 4) and [Os(btfppy) 2)(PPh 2Me)] ( 6), in which the incoming PPh 2Me replaced the CO located trans to the carbon atom of one cyclometalated ligand. UV-vis and emission spectra were measured, revealing the lowest excited state for all complexes as a nominally ligand-centered (3)pipi* state mixed with certain MLCT character. Introduction of the electron-withdrawing substituents on the cyclometalated chelates or replacement of one CO ligand with phosphine at the metal center increased the MLCT contribution in the first excited state, giving a broad and featureless emission with greatly enhanced quantum yields.  相似文献   

19.
We investigated the hydrogen bonding structures and proton transfer for the hydration complexes of alizarin (Az) produced in a supersonic jet using fluorescence excitation (FE), dispersed laser induced fluorescence (LIF), visible-visible hole burning (HB), and fluorescence detected infrared (FDIR) spectroscopy. The FDIR spectrum of bare Az with two O-H groups exhibits two vibrational bands at 3092 and 3579 cm(-1), which, respectively, correspond to the stretching vibration of O1-H1 that forms a strong intramolecular hydrogen bond with the C9=O9 carbonyl group and the stretching vibration of O2-H2 that is weakly hydrogen-bonded to O1-H1. For the 1:1 hydration complex Az(H(2)O)(1), we identified three conformers. In the most stable conformer, the water molecule forms hydrogen bonds with the O1-H1 and O2-H2 groups of Az as a proton donor and proton acceptor, respectively. In the other conformers, the water binds to the C10=O10 group in two nearly isoenergetic configurations. In contrast to the sharp vibronic peaks in the FE spectra of Az and Az(H(2)O)(1), only broad, structureless absorption was observed for Az(H(2)O)(n) (n≥ 2), indicating a facile decay process, possibly due to proton transfer in the electronic excited state. The FDIR spectrum with the wavelength of the probe laser fixed at the broad band exhibited a broad vibrational band near the O2-H2 stretching vibration frequency of the most stable conformer of Az(H(2)O)(1). With the help of theoretical calculations, we suggest that the broad vibrational band may represent the occurrence of proton transfer by tunnelling in the electronic ground state of Az(H(2)O)(n) (n≥ 2) upon excitation of the O2-H2 vibration.  相似文献   

20.
The cyclometalated compounds [Pt(C^N)(HC^N)Cl] [HC^N = 2-phenylpyridine (Hppy; 1a), 1-(4-tert-butylphenyl)isoquinoline (Htbpiq; 1b)] react with 1,2-benzenedithiol, t-BuOK, and Bu(4)NCl in a 1:1:2:1 molar ratio in CH(2)Cl(2)/MeOH to give the complexes Bu(4)N[Pt(C^N)(bdt)] [bdt = 1,2-benzenedithiolate; C^N = ppy (Bu(4)N2a), tbpiq (Bu(4)N2b)]. In the absence of Bu(4)NCl, the same reactions afford solutions of K2a and K2b, which react with [AuCl(PCy(3))] to give the neutral heterometallic derivatives [Pt(C^N)(bdt){Au(PCy(3))}] [C^N = ppy (3a), tbpiq (3b)]. The cationic derivatives [Pt(C^N)(bdt){Au(PCy(3))}(2)]ClO(4) [C^N = ppy (4a), tbpiq (4b)] are obtained by reacting 3a and 3b with acetone solutions of [Au(OClO(3))(PCy(3))]. The crystal structures of 3b and 4b reveal the formation of short Pt···Au metallophilic contacts in the range 2.929-3.149 ?. Complexes 3b, 4a, and 4b undergo dynamic processes in solution that involve the migration of the [Au(PCy(3))](+) units between the S atoms of the dithiolate. Complexes Bu(4)N2a and 2b display a moderately solvatochromic band in their electronic absorption spectra that can be ascribed to a transition of mixed ML'CT/LL'CT character (M= metal; L = bdt; L' = C^N; CT = charge transfer), while their emissions are assignable to transitions of the same orbital parentage but from triplet excited states. The successive addition of [Au(PCy(3))](+) units to the anions 2a and 2b results in an increase in the absorption and emission energies attributable to lower highest occupied molecular orbital energies. Additionally, the characteristics of the absorption and emission spectra of the heterometallic derivatives indicate a gradual loss of LL'CT character in the involved electronic transitions, with a concomitant increase of the L'C and ML'CT contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号