首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contributions to the Chemistry of Sulfur. 114. Crystal and Molecular Structures of Hexathiepane (S6CH2), Pentathiane (S5CH2), and Dibenzylpentathiane (S5C (CH2C6H5)2) The crystal and molecular structures of hexathiepane 1 , pentathiane 2 and dibenzylpentathiane 3 were determined by single crystal X-ray structure analyses. 1 : Monoclinic space group P21/c; a = 7.694(4), b = 7.668(4), c = 12.367(6) Å, β = 108.9(1)°; Z = 4, dcalc. = 1.986 g/cm3. The seven-membered heterocycle exists in twist-conformation. 2 : Monoclinic space group C2/c; a = 10.990(5), b = 6.872(4), c = 15.507(6) Å, β = 94.1(1)°; Z = 8, dcalc. = 1.982 g/cm3. The six-membered heterocycle exists in chair-conformation. 3 : Monoclinic space group P21/c; a = 12.907(8), b = 13.611(8), c = 9.408(6) Å, β = 98.9(1)°; Z = 4, dcalc. = 1.442 g/cm3. 3 is analogous to 2 a six-membered heterocycle with chair-conformation. The benzylic groups are distorted to each other. Bond lengths, bond angles, and dihedral angles of the heterocyclic sulfur rings arc discussed, especially with regard to a comparison with cyclohexasulfur, cycloheptasulfur. and cyclooctasulfur.  相似文献   

2.
π-Complexes of Heavy Metals. X. Synthesis and Crystal Structure of {[(1,3,5-(CH3)3C6H3)2Tl][AlCl4]}2: an Arene Stabilized Dimeric Thallium(I) Tetrachloroaluminate From a solution of AlCl3 and TlCl in mesitylene, the bis(arene)thallium complex {[(1,3,5-(CH3)3C6H3)2Tl][AlCl4]}2 ( 1 ) (space group P21/c with a = 19.575(4) Å, b = 12.436(2) Å, c = 19.415(4) Å, β = 101.69(3)° at T = ?90 ± 1°C; Z = 4) will crystallize at low temperature. This compound can be described as a dimeric thallium(I) tetrachloroaluminate with a sceleton similar to that of (TeI4)4, shielded by four arenes, in pairs coordinated at the thallium atoms. In the solid state the complete configuration has point group symmetry 1 (C1). Tl? Cl distances ranging from 3.292(3) to 3.679(3) Å point out an ionic bonding situation between arene2Tl+ and AlCl4? fragments. The strengths of the η6 like Tl-arene interactions are characterized by distances Tl(1)–C of 3.250 Å and 3.315 Å, and Tl(2)? C of 3.285 Å and 3.328 Å and a temperature of release of all arene molecules of 61°C, which has been determined by differential thermal analysis, to yield pure thallium(I) tetrachloroaluminate.  相似文献   

3.
Formation of Octahedral Complexes via cis-Addition to Square Planar Bis (oxamideoximato)nickel(II): Three Structure Examples In the reaction of orange square planar bis(oxamide oximato)nickel(II) with acids, blue to blue-green octahedral complexes are formed with neutral oxamide oximide ligands and two acid anions in cis-positions. Three compounds are described: cis-dichlorobis(oxamide oxime)nickel(II) ( 1 ), NiCl2(C2H6N4O2)2, Mr = 365.81, monoclinic P21/n, a = 6.641(2), b = 14.086(4), c = 13.473(3) Å, β = 96.26(2)°, V = 1 252.8 Å3, Z = 4, dc = 1.94 gcm?3, final Rw = 0.031 for 4090 reflections. In cis-di(sulfanilato)bis(oxamide oxime)nickel(II) dihydrate ( 2 ) one sulfanilic anion coordinates via the sulfonic acid group, the other one via the amino group; Ni(C6H6NO3S)2(C2H6N4O2)2 · 2 H2O, Mr = 675.30, monoclinic P21, a = 6.879(3), b = 14.305(5), c = 13.930(5) Å, β = 103.62(4)°, V = 1332 Å, Z = 2, dc = 1.68 gcm?3, R = 0.067 for 2693 reflections. In catena-μ-(phthalato)bis(oxamide oxime)nickel(II) tetrahydrate ( 3 ) bidentate bridging phthalate anions lead to chain formation; Ni(C8H4O4)(C2H6N4O2)2 · 4H2O, Mr = 531.09, monoclinic P21/c, a = 10.633(8), b = 11.324(5), c = 17.680(14) Å, β = 98.25(7)°, V = 2107 Å3, Z = 4, dc = 1.67 gcm?3. Final R = 0.110 for 3290 reflections.  相似文献   

4.
Coordination-chemistry of cis-Trioxotungsten(VI) Complexes. Crystal Structures of LWO3 · 3 H2O, [L′WO2(OH)]Br, [LWO2Br]Br, [L2W2O5](S2O6) · 4 H2O and [LWO2(μ-O)WO(O2)2(OH2)] (L = 1,4,7-Triazacyclonane; L′ = 1,4,7-Trimethyl-1,4,7-triazacyclononane) The cyclic triamines 1,4,7-triazacyclononane (L; C6H15N3) and 1,4,7-trimethyl-1,4,7-triazacyclononane (L′; C9H21N3) react in aqueous solution with WO3 affording LWO3 · 3 H2O, 1 , and L′WO3 · 3 H2O, respectively, which yield [L′WO2(OH)]Br, 2 , and [LWO2Br]Br, 3 , in concentrated HBr solutions. In aqueous CH3SO3H solution 1 dimerizes. The iodide and dithionate 4 salts of [L2W2O5]2+ have been isolated. In 35% H2O2 complex 1 yields the neutral species [LWO2(μ-O)WO(O2)2(H2O)] 5 . The crystal structures of 1 – 5 have been determined by X-ray analysis. Crystal data: 1 : P21/c; a = 7.729(2), b = 14.887(3), c = 10.774(2) Å, β = 90.77(2)°, Z = 4; 2 : Cc; 8.910(3), b = 12.220(6), c = 13.279(6) Å, β = 101.31(3)°, Z = 4; 3 : Cmc21, a = 8.857(5), b = 12.062(7), c = 11.218(7) Å, Z = 4; 4 : Cc, a = 17.601(7), b = 12.906(7), c = 14.107(8) Å, β = 124.08(4)°, Z = 4; 5 : P212121; a = 8.452(4), b = 11.301(6), c = 13.750(6) Å, Z = 4.  相似文献   

5.
Preparation and Crystal Structure of Tetraphenylphosphonium Hexathiocyanatorhodate(III), [P(C6H5)4]3[Rh(SCN)6] By treatment of RhCl3 · n H2O with KSCN in water a mixture of the linkage isomers [Rh(NCS)n(SCN)6–n]3?, n = 0–2 is formed which is separated by ion exchange chromatography on diethylaminoethyl cellulose. The X-ray structure determination on a single crystal of [P(C6H5)4]3[Rh(SCN)6] (monoclinic, space group C1c1, a = 13.620(5), b = 22.929(13), c = 22.899(9) Å, β = 98.55(3)°, Z = 4) confirms the coordination of all ligands via S with the middle Rh? S distance of 2.372 Å and Rh? S? C angles of 109°. The SCN groups are nearly linear with 175° and averaged bondlengths S? C 1.63 and C? N 1.14 Å. The crystal lattice is build up by layers of complex anions and voluminous cations with no specific interactions but which are closely connected by thiocyanate ligands and phenyl rings.  相似文献   

6.
Hydrothermal syntheses of single crystals of rare earth iodates, by decomposition of the corresponding periodate, are presented. This appears to be a generic method for making rare earth iodate crystals in a short period of time. Single crystal X‐ray diffraction structures of the four title compounds are presented. Sc(IO3)3: Space group R3, Z = 6, lattice dimensions at 100 K; a = b = 9.738(1), c = 13.938(1) Å; R1 = 0.0383. Y(IO3)3 · 2 H2O: Space group P1, Z = 2, lattice dimensions at 100 K: a = 7.3529(2), b = 10.5112(4), c = 7.0282(2) Å, α = 105.177(1)°, β = 109.814(1)°, γ = 95.179(1)°; R1 = 0.0421. La(IO3)3 · ? H2O: Space group Pn, Z = 2, lattice dimensions at 100 K: a = 7.219(2), b = 11.139(4), c = 10.708(3) Å, β = 91.86(1)°; R1 = 0.0733. Lu(IO3)3 · 2 H2O: Space group P1, Z = 2, lattice dimensions at 120 K: a = 7.2652(9), b = 7.4458(2), c = 9.3030(3) Å, α = 79.504(1)°, β = 84.755(1)°, γ = 71.676(2)°; R1 = 0.0349.  相似文献   

7.
Chalcogenohalogenogallates(III) and -indates(III): A New Class of Compounds for Elements of the Third Main Group. Preparation and Structure of [Ph4P]2[In2SX6], [Et4N]3[In3E3Cl6] · MeCN and [Et4N]3[Ga3S3Cl6] · THF (X = Cl, Br; E = S, Se) [In2SCl6]2?, [In2SBr6]2?, [In3S3Cl6]3?, [In3Se3Cl6]3?, and [Ga3S3Cl6]3? were synthesised as the first known chalcogenohalogeno anions of main group 3 elements. [Ph4P]2[In2SCl6] ( 1 ) (P1 ; a = 10.876(4) Å, b = 12.711(6) Å, c = 19.634(7) Å, α = 107.21(3)°, β = 96.80(3)°, γ = 109.78(3)°; Z = 2) and [Ph4P]2[In2SBr6] ( 2 ) (C2/c; a = 48.290(9) Å, b = 11.974(4) Å, c = 17.188(5) Å, β = 93.57(3)°, Z = 8) were prepared by reaction of InX3, (CH3)3SiSSi(CH3)3 and Ph4PX (X = Cl, Br) in acetonitrile. The reaction of MCl3 (M = Ga, In) with Et4NSH/Et4NSeH in acetonitrile gave [Et4N]3[In3S3Cl6] · MeCN ( 3 ) (P21/c; a = 17.328(4) Å, b = 12.694(3) Å, c = 21.409(4) Å, β = 112.18(1)°, Z = 4), [Et4N]3[In3Se3Cl6] · MeCN ( 4 ) (P21/c; a = 17.460(4) Å, b = 12.816(2) Å, c = 21.513(4) Å, β = 112.16(2)°, Z = 4), and [Et4N]3[Ga3S3Cl6] · THF ( 5 ) (P21/n; a = 11.967(3) Å, b = 23.404(9) Å, c = 16.260(3) Å, β = 90.75(2)°, Z = 4). The [In2SX6]2? anions (X = Cl, Br) in 1 and 2 consist of two InSX3 tetrahedra sharing a common sulfur atom. The frameworks of 3, 4 and 5 each contain a six-membered ring of alternating metal and chalcogen atoms. Two terminal chlorine atoms complete a distorted tetrahedral coordination sphere around each metal atom.  相似文献   

8.
Indium(III) chloride forms in water with potassium 1,2‐dithiooxalate (dto) and potassium 1,2‐dithiosquarate (dtsq) stable coordination compounds. Due to the higher bridging ability of the 1,2‐dithiooxalate ligand in all cases only thiooxalate bridged binuclear complexes were found. From 1,2‐dithioquadratate with an identical donor atom set mononuclear trischelates could be isolated. Five crystalline complexes, (BzlMe3N)4[(dto)2In(dto)In(dto)2] ( 1 ), (BzlPh3P)4[(dto)2In(dto)In(dto)2] ( 2 ), (BzlMe3N)3[In(dtsq)3] ( 3 ), (Bu4N)3[In(dtsq)3] ( 4 ) and (Ph4P)[In(dtsq)2(DMF)2] ( 5 ), have been isolated and characterized by X‐ray analyses. Due to the type of the complex and the cations involved these compounds crystallize in different space groups with the following parameters: 1 , monoclinic in P21/c with a = 14.4035(5) Å, b = 10.8141(5) Å, c = 23.3698(9) Å, β = 124.664(2)°, and Z = 2; 2 , triclinic in P with a = 11.3872(7) Å, b = 13.6669(9) Å, c = 17.4296(10) Å, α = 88.883(5)°, β = 96.763(1)°, γ = 74.587(5)°, and Z = 1; 3 , hexagonal in R3 with a = 20.6501(16) Å, b = 20.6501(16) Å, c = 19.0706(13) Å and Z = 6; 4 , monoclinic in P21/c with a = 22.7650(15) Å, b = 20.4656(10) Å, c = 14.4770(9) Å, β = 101.095(5)°, and Z = 4; 5 , triclinic in P with a = 9.2227(6) Å, b = 15.3876(9) Å, c = 15.5298(9) Å, α = 110.526(1)°, β = 100.138(1)°, γ = 101.003(1)°, and Z = 2.  相似文献   

9.
The Crystal Structure of Tris(N,N-Diethyl-N′-benzoylselenoureato)indium(III) In(C12H15N2OSe)3 crystallizes in the monoclinic space group P21/c. The cell parameters are a = 11.792(2), b = 36.797(4), c = 18.574(2) Å, β = 92.15(2)° and Z = 4. The structure was solved with Patterson and direct methods and was refined to a final R-value of 3.41%. The asymmetric unit contains two complex molecules. The indium atoms are bidentally coordinated by three N,N-Diethyl-N′-benzoylselenourea molecules to form distorted octahedra with facial arrangement of the selenium and oxygen donor atoms. The chelate rings diverge strongly from planarity. The In? Se bond lengths vary from 2.643(1) to 2.657(1) Å, the In? O bond lengths from 2.179(4) to 2.203(4) Å, respectively.  相似文献   

10.
Coordination Chemistry of 1,3-Dithiole-2-selone-4,5-diselenolate (dsise) and 1,3-Dithiole-2-selone-4,5-dithiolate (dmise). Crystal and Molecular Structure of Tetrabutylammonium bis(1,3-dithiole-2-selone-4,5-diselenolato)nickelate(II) and -(III), [(n-C4H9)4N]2[Ni(dsise)2 and (n-C4H9)4[Ni(dsise)2] Syntheses and properties of metal(II) and metal(III) bis-chelates of 1,3-dithiole-2-selone-4,5-diselenolate (dsise), of the general type (Bu4N)n)M(dsise)2] (n =2 : M = Zn, Cd, Hg, Cu, Ni, Pd; n = 1: M = Ni, Au) are reported and compared with chelates of the isologue 1,3-dichalcogenole-2-chalcogenoe-4,5-dichalcogenolate (i. r., 13C-n. m. r., e. p. r., cyclovoltammetric data). The unexpected rearrangement during the syntheses of dsise and 1,3-dithiole-2-selone-4,5-diselenolate (dmise) is characterized by ab-initio SCF calculations. The x-ray structures of (Bu4N)2[Ni(dsise)2] (space group P21/c, a = 8.5556(13) Å, b = 15.0009(12) Å, c = 19.696(3) Å, β = 96.018(7)°, V = 2513.9(5) Å3, Z = 2) and Bu4N[Ni(dsise)2] (space group C2/c, a = 25.133(6) Å, b = 9.828(4) Å, c = 18.104(7) Å, β = 132.81(1)°, V = 3281(2) Å3, Z = 4) are given.  相似文献   

11.
Abstract

The structures of isomorphic Tb(III) and Ho(III) complexes with 2,6-dihydroxybenzoic acid of formula [Tb(C7H5O4] 2H2O and [Ho(C7H5O4)3 4H2O] 2H2O has been determined by X-ray diffraction and refined to a residual R = 0.030 for 5376 observed reflections and R = 0.0284 for 5660 observed reflections, for Tb(III) and Ho(III) complexes, respectively. Crystals are triclinic, space group P1 with a= 10.748(2), b=11.309(2), c = 12.452(2)Å, α = 82.28(3), ? = 73.05(5), γ = 68.27(3)° for Tb(III) and a= 10.731(2), b=11.269(2), c = 12.436(2)Å, α = 82.25(3), β = 72.92(3), γ = 68.46(3)° for Ho(III).

In the structure of these monomelic complexes the metal ions are coordinated by oxygen atoms of one bidentate chelating and two monodentate carboxylate groups and four molecules of water. Tb-O distances are in the range 2.323(3)-2.506(3) Å and Ho-0 2.297(3)-2.486(3) Å. The crystal structure, consisting of discrete units of neutral complexes with two molecules of water of crystallization is stabilized by intra-and intermolecular hydrogen bonds.  相似文献   

12.
Metal Sulfur Nitrogen Compounds. 20. Reaction Products of PdCl2 and Pd(CN)2 with S7NH. Preparation and Structure of the Complexes [Ph6P2N][Pd(S3N)(S5)] and X[Pd(S3N)(CN)2] X = [Me4N]+, [Ph4P]+ With PdCl2 and [Ph6P2N]OH S7NH forms the complex salt [Ph6P2N][Pd(S3N)(S5)], which could be isolated in two modifications (α- and β-form). The α-form is triclinic, a = 9.347(4), b = 14.410(8), c = 15.440(11) Å, α = 76.27°(5), β = 77.06°(4), γ = 76.61α(4), Z = 2, space group P1 . The β-form is orthorhombic, a = 9.333(2), b = 17.659(4), c = 23.950(6) Å, Z = 4. The structure of the metal complex is the same in the two modifications. One S3N? and one S52? are coordinate as chelate ligands to Pd. From S7NH, Pd(CN)2, and XOH X = [(CH3)4N]+ and [(C6H5)4P]+ the salts X[Pd(S3N)(CN)2] were formed. The (CH3)4N-salt is isomorphous with the analogous Ni compound described earlier, the (C6H5)4P-salt is triclinic, a = 9.372(4), b = 10.202(5), c = 13.638(6) Å, α = 86.36α(4), β = 85.66°(4), γ = 88.71°(4), Z = 2, space group P1 . One S3N? chelate ligand and two CN? ions are bound to Pd. In all these complexes the coordination of Pd is nearly square planar.  相似文献   

13.
The synthesis and crystal structure of a new fluoromanganate(III), [(H3N(CH2)2)2NH2]2[MnF5(H2O)]3, is reported. The unit cell is unusually large: monoclinic, P21/c (no. 14), a = 41.0512(13) Å; b = 9.6469(4) Å; c = 12.8021(7) Å; β = 91.927(4)°; Z = 8, R = 0.0627 and wR2 = 0.1347. The [MnF5(H2O)]2– anions are octahedral with a strong distortion along the F–Mn OH2 axes due to the Jahn-Teller effect. A very rich intermolecular hydrogen bond framework is present, leading to chains of octahedra linked by double-hydrogen bonds. The polarized optical spectra on single crystals are explained in terms of the intraconfigurational d4 transitions split by a ligand field of C4v symmetry.  相似文献   

14.
Mesityl‐vanadium(III)‐phenolate Complexes: Synthesis, Structure, and Reactivity Protolysis reactions of [VMes3(THF)] with ortho‐substituted phenols (2‐iso‐propyl‐(H–IPP), 2‐tert‐butyl(H–TBP), 2,4,6‐trimethylphenol (HOMes) and 2,2′biphenol (H2–Biphen) yield the partially and fully phenolate substituted complexes [VMes(OAr)2(THF)2] (OAr = IPP ( 1 ), TBP ( 2 )), [VMes2(OMes)(THF)] ( 4 ), [V(OAr)3(THF)2] (OAr = TBP ( 3 ), OMes ( 5 )), and [V2(Biphen)3(THF)4] ( 6 ). Treatment of 6 with Li2Biphen(Et2O)4 results in formation of [{Li(OEt2)}3V(Biphen)3] ( 7 ) and with MesLi complexes [{Li(THF)2}2VMes(Biphen)2] · THF ( 8 ) and [{Li(DME)}VMes2(Biphen)] ( 9 ) are formed. Reacting [VCl3(THF)3] with LiOMes in 1 : 1 to 1 : 4 ratios yields the componds [VCl3–n(OMes)n(THF)2] (n = 1 ( 5 b ), 2 ( 5 a ), 3 ( 5 )) and [{Li(DME)2}V(OMes)4] ( 5 c ), the latter showing thermochromism due to a complexation/decomplexation equilibrium of the solvated cation. The mixed ligand mesityl phenolate complexes [{Li(DME)n}{VMes2(OAr)2}] (OAr = IPP ( 10 ), TBP ( 11 ), OMes ( 12 ) (n = 2 or 3) and [{Li(DME)2}{VMes(OMes)3}] ( 15 ) are obtained by reaction of 1 , 2 , 5 a and 5 with MesLi. With [{Li(DME)2(THF)}{VMes3(IPP)}] ( 13 ) a ligand exchange product of 10 was isolated. Addition of LiOMes to [VMes3(THF)] forming [Li(THF)4][VMes3(OMes)] ( 14 ) completes the series of [Li(solv.)x][VMes4–n(OMes)n] (n = 1 to 4) complexes which have been oxidised to their corresponding neutral [VMes4–n(OMes)n] derivatives 16 to 19 by reaction with p‐chloranile. They were investigated by epr spectroscopy. The molecular structures of 1 , 3 , 5 , 5 a , 5 a – Br , 7 , 10 and 13 have been determined by X‐ray analysis. In 1 (monoclinic, C2/c, a = 29.566(3) Å, b = 14.562(2) Å, c = 15.313(1) Å, β = 100.21(1)°, Z = 8), 3 (orthorhombic, Pbcn, a = 28.119(5) Å, b = 14.549(3) Å, c = 17.784(4) Å, β = 90.00°, Z = 8), ( 5 ) (triclinic, P1, a = 8.868(1) Å, b = 14.520(3) Å, c = 14.664(3) Å, α = 111.44(1)°, β = 96.33(1)°, γ = 102.86(1)°, Z = 2), 5 a (monoclinic, P21/c, a = 20.451(2) Å, b = 8.198(1) Å, c = 15.790(2) Å, β = 103.38(1)°, Z = 4) and 5 a – Br (monoclinic, P21/c, a = 21.264(3) Å, b = 8.242(4) Å, c = 15.950(2) Å, β = 109.14(1)°, Z = 4) the vanadium atoms are coordinated trigonal bipyramidal with the THF molecules in the axial positions. The central atom in 7 (trigonal, P3c1, a = 20.500(3) Å, b = 20.500(3) Å, c = 18.658(4) Å, Z = 6) has an octahedral environment. The three Li(OEt2)+ fragments are bound bridging the biphenolate ligands. The structures of 10 (monoclinic, P21/c, a = 16.894(3) Å, b = 12.181(2) Å, c = 25.180(3) Å, β = 91.52(1)°, Z = 4) and 13 (orthorhombic, Pna21, a = 16.152(4) Å, b = 17.293(6) Å, c = 16.530(7) Å, Z = 4) are characterised by separated ions with tetrahedrally coordinated vanadate(III) anions and the lithium cations being the centres of octahedral and trigonal bipyramidal solvent environments, respectively.  相似文献   

15.
Interaction of copper(II) chloride with 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine leads to formation of copper(II) complex [CuCl2·2C3N3(OC3H5)3] ( I ). Electrochemical reduction of I produces the mixed‐valence CuI, II π, σ‐complex of [Cu7Cl8·2C3N3(OC3H5)3] ( II ). Final reduction produces [Cu8Cl8·2C3N3(OC3H5)3]·2C2H5OH copper(I) π‐complex ( III ). Low‐temperature X‐ray structure investigation of all three compounds has been performed: I : space group P1¯, a = 8.9565(6), b = 9.0114(6), c = 9.7291(7) Å, α = 64.873(7), β = 80.661(6), γ = 89.131(6)°, V = 700.2(2) Å3, Z = 1, R = 0.0302 for 2893 reflections. II : space group P1¯, a = 11.698(2), b = 11.162(1), c = 8.106(1) Å, α = 93.635(9), β = 84.24(1), γ = 89.395(8)°, V = 962.0(5) Å3, Z = 1, R = 0.0465 for 6111 reflections. III : space group P1¯, a = 8.7853(9), b = 10.3602(9), c = 12.851(1) Å, α = 99.351(8), β = 105.516(9), γ = 89.395(8), V = 1111.4(4) Å3, Z = 1, R = 0.0454 for 4470 reflections. Structure of I contains isolated [CuCl2·2C3N3(OC3H5)3] units. The isolated fragment of I fulfils in the structure of II bridging function connecting two hexagonal prismatic‐like cores Cu6Cl6, whereas isolated Cu6Cl6(CuCl)2 prismatic derivative appears in III . Coordination behaviour of the 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine moiety is different in all the compounds. In I ligand moiety binds to the only copper(II) atom through the nitrogen atom of the triazine ring. In II ligand is coordinated to the CuII‐atom through the N atom and to two CuI ones through the two allylic groups. In III all allylic groups and nitrogen atom are coordinated by four metal centers. The presence of three allyl arms promotes an acting in II and III structures the bridging function of the ligand moiety. On the other hand, space separation of allyl groups enables a formation of large complicated inorganic clusters.  相似文献   

16.
The chelate complex (C5H5)2TiS2C6H4 crystallizes in the centrosymmetric monoclinic soace group P21/c with the cell dimensions a = 14.366 Å, b = 15.380 Å, c = 12.736 Å, β = 90.2° and Z = 8. The S2C6H4 plane of the molecule is folded out of the TiS2 plane by an angle of 46°. The coordination polyhedron around the titanium atom defined by the cyclopentadienyl ring centroids and the sulfur atoms is a distorted tetrahedron of nearly mm2? C2v symmetry. The distances Ti? S and S? C are shorter, then those of single bonds of these atoms. The cyclopentadienyl rings are in staggered or eclipsed arrangement with respect to each another.  相似文献   

17.
By alternating‐current electrochemical synthesis crystals of {Cu[H2NC5H4N(C3H5)]Br2} ˙ H2O ( I ), {Cu[H2NC5H4N(C3H5)]Br0.65Cl1.35} ˙ H2O ( II ) and {Cu[H2NC5H4N(C3H5)]Cl2} ( III ) π‐complexes have been obtained and structurally investigated. The I and II compounds are isostructural and crystallize in a monoclinic sp. gr. P21/c, I : a = 7.359(2)Å, b = 12.3880(6)Å, c = 13.637(3)Å, β = 107.03(1)°, V = 1188.7(4)Å3, Z = 4 for C8H13N2OBr2Cu composition, R = 0.0293 for 2140 reflections. II : a = 7.2771(6)Å, b = 12.3338(3)Å, c = 13.4366(7)Å, β = 107.632(2)°, V = 1149.3(1)Å3, Z = 4 for C8H13N2Br0.65Cl1.35Cu composition, R = 0.0463 for 2185 reflections. Metal and halogen atoms form centrosymmetric Cu2X4 dimers. Each copper atom is surrounded by three halogen atoms and by a weakly bonded C=C‐group of the onium moiety. Isolated {Cu[H2NC5H4N(C3H5)]}2X4 dimers are combined into a three‐dimensional network due to a bridging function of water molecules via a system of rather strong hydrogen bonds. Chlorine derivative III crystallizes in another structure type: sp. gr. C2/c, a = 21.568(7)Å, b = 7.260(2)Å, c = 13.331(3)Å, β = 95.65(2)°, V = 2077(2)Å3, Z = 8 for C8H11N2Cl2Cu composition. Copper atom, included in CuCl2 isolated fragment, is coordinated to a C=C‐bond of ligand moiety. N‐H…Cl hydrogen bonds unite Cu[H2NC5H4N(C3H5)]Cl2 subunits into infinite ribbons. π‐Interaction in III appears to be more effective than in I and II .  相似文献   

18.
Metal Sulfur Nitrogen Compounds 18. Reaction Products of S7NH with Nickel and Copper Salts. Preparation and Structures of the Complexes [Ch34N][Ni(S3N)(CN)2], [(C6H5)4As][Cu(S3N)2], and [(C6H5)4AS][Cu(S3N)Cl]. In the presence of MOH (M = K, [(CH3)4N]), S7NH reacts with Ni(CN)2 to yield, besides the three-nuclear complex M[(S3NNi)3S2], the new mononuclear complex M[Ni(S3N)(CN)2]. The [(CH3)4N]+ salt is monoclinic, C2/m, a = 19.303(9), b =6.941(3), c=16.309(10) Å, β = 144.510(2), Z = 4. The [Ni(S3N)(CN)2]- anion is planar, Ni being coordinated by one S3N? chelate ligand and by two CN? ions. From the reaction of CuCI2, S7NH, and [Ph4As]OH result the salts [Ph4As][Cu(S3N)2] or [Ph4As][Cu(S3N)Cl], depending on the reaction conditions. [Ph4As][Cu(S3N)2] is triclinic, P&1macr;, a = 7.073(3), b = 11.742(4), c = 16.439(6) Å α = 91.08°(3), β = 99.01°(3), γ = 91.58°(3), Z = 2. Two S3N? chelate ligands coordinate to CuI in a distorted tetrahedral arrangement. [Ph4As][Cu(S3N)Cl] is monoclinic, C2/c, a = 17.174(6), b = 13.650(5), c = 21.783(5) Å β = 100.45°(2), Z = 8. CuI is coordinated by one S3N? chelate ligand and one C1?, resulting in a trigonal planar environment.  相似文献   

19.
Synthesis, Structure, and Reactions of Vanadium Acid Esters VO(OR)3: Transesterification and Reaction with Oxalic Acid The reaction of tert.‐Butyl Vanadate VO(O‐tert.Bu)3 ( 1 ) with H2C2O4 in the primary alcohols ethanol and propanol results in the formation of (ROH)(RO)2OVV(C2O4)VVO(OR)2(HOR) (with R = C2H5 2 and R = C3H7 3 ). Compounds 2 and 3 are the first structurally characterized neutral, binuclear oxo‐oxalato‐complexes with pentavalent vanadium. The two vanadium atoms are connected by a bisbidentate oxalate group. The {VO6} coordination at each vanadium site is completed by a terminal oxo group, an alcohol ligand and two alcoxide groups. The binuclear molecules are connected to chains by hydrogen bonding. In the case of 2 a reversible isomorphic phase transition in the temperature range of –90 °C to –130 °C is observed. From methanolic solution the polymeric Methyl Vanadate [VO(OMe)3] ( 4 ) was obtained by transesterification. A report on the crystal structures of 1 , 2 and 3 as well as a redetermination of the structure of 4 is given. Crystal data: 1, orthorhombic, Cmc21, a = 16.61(2) Å, b = 9.274(6) Å, c = 10.784(7) Å, V = 1662(2) Å3, Z = 4, dc = 1.144 gcm–1; 2 (–90 ° C) , monoclinic, I2/a, a = 33.502(4) Å, b = 7.193(1) Å, c = 15.903(2) Å und β = 143.060(3)°, V = 2303(1) Å3, Z = 4, dc = 1.425 gcm–1; 2 (–130 ° C) , monoclinic, I2/a, a = 33.274(4) Å, b = 7.161(1) Å, c = 47.554(5) Å, β = 142.798(2)°, V = 6851(1) Å3, Z = 12, dc = 1.438 gcm–1; 3 , triklinic, P1, a = 9.017(5) Å, b = 9.754(5) Å, c = 16.359(9) Å, α = 94.87(2)°, β = 93.34(2)°, γ = 90.42(2)°, V = 1431(1) Å3, Z = 2, dc = 1.340 gcm–1; 4 , triklinic, P1, a = 8.443(2) Å, b = 8.545(2) Å, c = 9.665(2) Å, α = 103.202(5)°, β = 96.476(5)°, γ = 112.730(4)°, V = 610.2(2)Å3, Z = 4, dc = 1.742 gcm–1.  相似文献   

20.
The Crystal Chemistry of Copper Rare-Earth Oxotungstates: (I): triclinic-α-CuTbW2O8, (II): monoclinic-CuInW2O8 and (III): monoclinic-CuYW2O8 Single crystals of (I), (II) and (III) were prepared by recrystallisation in closed systems and examined by X-ray technique. (I): space group C? P1 , a = 7.3080, b = 7.8945, c = 7.1476 Å, α = 115.23, β = 116.21, γ = 56.98°, Z = 2; (II): space group C? C2/c, a = 9.6576, b = 11.6496, c = 4.9863 Å, β = 91.17°, Z = 4; (III): space group C? P2/n, a = 10.0504, b = 5.8214, c = 5.0224 Å, β = 94.23°, Z = 2. The crystal structures are discussed with respect to calculations of the coulombterms of lattice energy and possible valence states of Cu2+ and Mo5+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号