首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
A thermochemical study of wulfenite, i.e., natural lead molybdate PbMoO4 (Kyzyl-Espe field deposit, Central Kazakhstan), is performed on a Setaram high-temperature heat-flux Tian-Calvet microcalorimeter (France). Enthalpies of the formation of wulfenite from oxides Δf H ox o (298.15 K) = ?88.5 ± 4.3 kJ/mol and simple substances Δf H°(298.15 K) = ?1051.2 ± 4.3 kJ/mol were determined by means of melt calorimetry. The Δf G°(298.15 K) of wulfenite corresponding to ?949.1 ± 4.3 kJ/mol was calculated using data obtained earlier for S°(298.15 K) = 161.5 ± 0.27 J/(K mol).  相似文献   

2.
The vaporization of praseodymium triiodide was studied by high-temperature mass spectrometry. Monomeric (PrI3) and dimeric (Pr2I6) molecules and the PrI 4 ? and Pr2I 7 ? negative ions were recorded in saturated vapor over the temperature range 842–1048 K. The partial pressures of neutral vapor components were determined. The enthalpies of sublimation Δs H o(298.15 K) in the form of monomers (291 ± 10 kJ/mol) and dimers (400 ± 30 kJ/mol) were calculated by the second and third laws of thermodynamics. The equilibrium constants of ion-molecular reactions were measured and the enthalpies of the reactions determined. The enthalpies of formation Δf H o(298.15 K) of molecules and ions in the gas phase were calculated (?373 ± 11, ?929 ± 31, ?865 ± 25, and ?1433 ± 48 kJ/mol for PrI3, Pr2I6, PrI 4 ? , and Pr2I 7 ? , respectively).  相似文献   

3.
Standard enthalpies of formation of amorphous platinum hydrous oxide PtH2.76O3.89 (Adams' catalyst) and dehydrated oxide PtO2.52 at T=298.15 K were determined to be -519.6±1.0 and -101.3 ±5.2 kJ mol-1, respectively, by micro-combustion calorimetry. Standard enthalpy of formation of anhydrous PtO2 was estimated to be -80 kJ mol-1 based on the calorimetry. A meaningful linear relationship was found between the pseudo-atomization enthalpies of platinum oxides and the coordination number of oxygen surrounding platinum. This relationship indicates that the Pt-O bond dissociation energy is 246 kJ mol-1 at T=298.15 K which is surprisingly independent of both the coordination number and the valence of platinum atom. This may provide an energetic reason why platinum hydrous oxide is non-stoichiometric. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
A thermochemical study of natural lithium micas, iron-containing polylithionite and lepidolite, was performed on a high-temperature heat-flux Calvet microcalorimeter (Setaram, France). Melt solution calorimetry was used to measure the enthalpies of mineral formation from the elements Δf H°el (298.15 K), ?5989.3 ± 9.6 and ?5981.3 ± 6.3 kJ/mol, respectively. The drop method was used to determine the enthalpy increments heating of the micas over the temperature interval 444–973 K. The equations for the temperature dependences of the heat capacities and enthalpies of Fe-polylithionite and Fe-lepidolite were obtained. The S° (298.15 K) and Δf G°el (298.15 K) values were estimated. The thermodynamic functions of the micas were calculated over the temperature range 298.15–1000 K.  相似文献   

5.
Introduction N-Guanylurea dinitramide (GUDN) is a new ener-getic oxidizer with higher energy and lower sensitivity. Its crystal density is 1.755 g·cm-3. The detonation velocity is about 8210 m·s-1. Its specific impulse and pressure exponent are 213.1 s and 0.73, respectively. It has the potential for possible use as an energy ingredient of propellants and explosives from the point of view of the above-mentioned high performance. Its preparation,1 properties2 and hygroscopocity2 have been …  相似文献   

6.
Enthalpies of sublimation for pyrazole and imidazole have been obtained by calorimetry at 298.15K. The ΔH0sub (298.15 K) values for these two compounds are, respectively, 69.16 ± 0.32 and 74.50 ± 0.40 kJ mole?1. From literature data obtained by combustion calorimetry for ΔH0f (c, 298.15 K), the enthalpies of formation of these compounds in the gaseous state (pyrazole: 185.1 ± 2.3 kJ mole?, imidazole: 133.0 ± 1.7 kJ mole?1) have been derived. Several energy values related to the molecular structure of these two compounds (as resonance energy, enthalpy of isomerization, …) have been determined. The study of pyrazole has enabled us to contribute to the evaluation of some characteristics of the NN bond.  相似文献   

7.
Condensed and gas phase enthalpies of formation of 3:4,5:6-dibenzo-2-hydroxymethylene-cyclohepta-3,5-dienenone (1, (−199.1 ± 16.4), (−70.5 ± 20.5) kJ mol−1, respectively) and 3,4,6,7-dibenzobicyclo[3.2.1]nona-3,6-dien-2-one (2, (−79.7 ± 22.9), (20.1 ± 23.1) kJ mol−1) are reported. Sublimation enthalpies at T=298.15 K for these compounds were evaluated by combining the fusion enthalpies at T = 298.15 K (1, (12.5 ± 1.8); 2, (5.3 ± 1.7) kJ mol−1) adjusted from DSC measurements at the melting temperature (1, (T fus, 357.7 K, 16.9 ± 1.3 kJ mol−1)); 2, (T fus, 383.3 K, 10.9 ± 0.1) kJ mol−1) with the vaporization enthalpies at T = 298.15 K (1, (116.1 ± 12.1); 2, (94.5 ± 2.2) kJ mol−1) measured by correlation-gas chromatography. The vaporization enthalpies of benzoin ((98.5 ± 12.5) kJ mol−1) and 7-heptadecanone ((94.5 ± 1.8) kJ mol−1) at T = 298.15 K and the fusion enthalpy of phenyl salicylate (T fus, 312.7 K, 18.4 ± 0.5) kJ mol−1) were also determined for the correlations. The crystal structure of 1 was determined by X-ray crystallography. Compound 1 exists entirely in the enol form and resembles the crystal structure found for benzoylacetone.  相似文献   

8.
A thermal and thermochemical study of natural aqueous hydroxyl-containing diorthosilicate, hemimorphite Zn4[Si2O7](OH)2 · H2O, was performed. The step character of its thermal decomposition was studied using FTIR spectroscopy. Melt solution calorimetry was used to determine the enthalpies of formation from oxides Δf H OOX (298.15 K) = −69.3 ± 9.9 kJ/mol and elements {ie1481-2} (298.15 K) = −3864.3 ± 10.2 kJ/mol.  相似文献   

9.
The standard dehydroxylation enthalpy of natural talc Mg3[Si4O10](OH)2 (87.8 ± 9.0 kJ/mol at 298.15 K) and the enthalpy of formation of dehydrated talc from the elements (Δf H elo (298.15 K) = −5527.0 ± 9.0 kJ/mol) were determined for the first time using Hess’s law, based on the total values of the enthalpy increments in heating a sample from room temperature to 973 K and the enthalpies of dissolution at 973 K for dehydrated talc measured in this work and those previously determined for talc and corresponding oxides.  相似文献   

10.
以苏糖酸与碳酸氢钾反应制得苏糖酸钾K(C4H7O5)·H2O,通过红外光谱、热重、化学分析及元素分析等对其进行了表征。用精密自动绝热热量计测量了该化合物在78K-395K温区的摩尔热容。实验结果表明,该化合物存在明显的脱水转变,其脱水浓度、摩尔脱水焓以及摩尔脱水熵分别为:(380.524 ± 0.093) K,(19.655 ± 0.012) kJ/mol 和 (51.618 ± 0.051) J/(K·mol)。将78K-362K和382K-395K两个温区的实验热容值用最小二乘法拟合,得到了两个表示热容随温度变化的多项式方程。以RBC-II型恒容转动弹热量计测定目标化合物的恒容燃烧能为(-1749.71 ± 0.91) kJ/mol,计算得到其标准摩尔生成焓为(-1292.56 ± 1.06) kJ/mol。  相似文献   

11.
The enthalpies of reactions of La2CoO4(cr) and CoCl2(cr) with hydrochloric acid were measured with an isothermal-jacket calorimeter. The results obtained and the available literature data were used to calculate the standard enthalpy of formation of La2CoO4(cr) at 298.15 K, Δf H o = ?2179 ± 7 kJ/mol.  相似文献   

12.
The enthalpies of combustion and formation of S-lactic acid at 298.15 K, Δc H mo(cr.) = −1337.9 ± 0.8 and Δf H mo(cr.) = −700.1 ± 0.9 kJ/mol, were determined by calorimetry. The temperature dependence of acid vapor pressure was studied by the transpiration method, and the enthalpy of its vaporization was obtained, Δvap H o(298.15 K) = 69.1 ± 1.0 kJ/mol. The temperature and enthalpy of fusion, T m (330.4 K) and Δm H o(298.15 K) = 14.7 ± 0.2 kJ/mol, were determined by differential scanning calorimetry. The enthalpy of formation of the acid in the gas phase was obtained. Ab initio methods were used to perform a conformational analysis of the acid, calculate fundamental vibration frequencies, moments of inertia, and total and relative energies of the stablest conformers. Thermodynamic properties were calculated in the ideal gas state over the temperature range 0–1500 K. A thermodynamic analysis of mutual transformation processes (the formation of SS- and RS(meso)-lactides from S-lactic acid and the racemization of these lactides) and the formation of poly-(RS)-lactide from S-lactic acid and SS- and RS(meso)-lactides was performed.  相似文献   

13.
The low-temperature heat capacity of K2MoO4 was measured by adiabatic calorimetry. The smoothed heat capacity values, entropies, reduced Gibbs energies, and enthalpies were calculated over the temperature range 0–330 K. The standard thermodynamic functions determined at 298.15 K were C p ° (298.15 K) = 143.1 ± 0.2 J/(mol K), S°(298.15 K) = 199.3 ± 0.4 J/(mol K), H°(298.15 K)-H°(0) = 28.41 ± 0.03 kJ/mol, and Φ°(298.15 K) = 104.0 ± 0.4 J/(mol K). The thermal behavior of potassium molybdate at elevated temperatures was studied by differential scanning calorimetry. The parameters of polymorphic transitions and fusion of potassium molybdate were determined.  相似文献   

14.
The constant-volume combustion energies of the lead salts of 2-hydroxy-3,5-dinitropyridine (2HDNPPb) and 4-hydroxy-3,5-dinitropyridine (4HDNPPb), ΔU c (2HDNPPb(s) and 4HDNPP(s)), were determined as –4441.92±2.43 and –4515.74±1.92 kJ mol–1 , respectively, at 298.15 K. Their standard enthalpies of combustion, Δc m H θ(2HDNPPb(s) and 4HDNPPb(s), 298.15 K), and standard enthalpies of formation, Δr m H θ(2HDNPPb(s) and 4HDNPPb(s), 298.15 K) were as –4425.81±2.43, –4499.63±1.92 kJ mol–1 and –870.43±2.76, –796.65±2.32 kJ mol–1 , respectively. As two combustion catalysts, 2HDNPPb and 4HDNPPb can enhance the burning rate and reduce the pressure exponent of RDX–CMDB propellant.  相似文献   

15.
The standard (p0=0.1 MPa) molar enthalpies of formation, ΔfHm0, for crystalline phthalimides: phthalimide, N-ethylphthalimide and N-propylphthalimide were derived from the standard molar enthalpies of combustion, in oxygen, at the temperature 298.15 K, measured by static bomb-combustion calorimetry, as, respectively, – (318.0±1.7), – (350.1±2.7) and – (377.3±2.2) kJ mol–1. The standard molar enthalpies of sublimation, ΔcrgHm0, at T=298.15 K were derived by the Clausius-Clapeyron equation, from the temperature dependence of the vapour pressures for phthalimide, as (106.9±1.2) kJ mol–1 and from high temperature Calvet microcalorimetry for phthalimide, N-ethylphthalimide and N-propylphthalimide as, respectively, (106.3±1.3), (91.0±1.2) and (98.2±1.4) kJ mol–1. The derived standard molar enthalpies of formation, in the gaseous state, are analysed in terms of enthalpic increments and interpreted in terms of molecular structure.  相似文献   

16.
The thermal dissociation of gaseous Mo(CO)6 and W(CO)6 in an argon carrier gas, Mo(CO)6 → Mo(CO)5 + CO (1) and W(CO)6 → W(CO)5 + CO (2), is studied over temperature ranges of ∼585–685 K for (1) and ∼690−810 K for (2) at a total gas concentrations of 4 × 10−6 and 4 × 10−5 mol/cm3 by using the shock tube technique in conjunction with absorption spectrophotometry. The measured rate constants are extrapolated to the high-pressure limit by means of a newly developed procedure, with the resultant expressions for the indicated temperature ranges reading as kd1,∞(T),[s−1] = 1016.12 ± 0.68exp[(−148.8 ± 8.1 kJ/mol)/RT] and kd2,∞(T),[s−1] = 1015.93 ± 0.63exp[(−171.7 ± 8.9 kJ/mol)/RT]. Comparison of the high-pressure dissociation rate constants with the published data revealed a considerable discrepancy, a tentative explanation of which is given. Based on the obtained high-pressure dissociation rate constants and the available data on the high-pressure room-temperature rate constants for the reverse reaction of recombination, the first bond dissociation energies for these molecules are evaluated and compared with previous determinations, both theoretical and experimental. The enthalpies of formation of Mo(CO)5 and W(CO)5 are determined: ΔfH°(Mo(CO)5, g, 298.15 K) = −644.1 ± 5.6 kJ/mol and ΔfH°(W(CO)5, g, 298.15 K) = −581.9 ± 6.6 kJ/mol. Based on the enthalpies of formation of Mo(CO)5, W(CO)5, Mo(CO)6, and W(CO)6, and the published molecular parameters of these four species, their thermochemical functions are calculated and presented in the form of NASA seven-term polynomials.  相似文献   

17.
The standard enthalpies of formation of liquid and gaseous octachlorotrisilane were estimated, Δf H o (298.15, Si3Cl8, g) = ?1397(9) kJ/mol and Δf H o (298.15, Si3Cl8, l) = ?1447(9) kJ/mol. The decomposition of Si3Cl8 over the temperature range 400–1000 K was studied theoretically.  相似文献   

18.
A calorimetric study of natural pyromorphite Pb5[PO4]3Cl was performed. Its enthalpy of formation was determined by melt solution calorimetry from elements Δf H el(298.15 K) = −4124 ± 20 kJ/mol. Value Δf G elo(298.15 K) = −3765 ± 20 kJ/mol was calculated.  相似文献   

19.
The solution structure and the aggregation behavior of (E)-2-lithio-1-(2-lithiophenyl)-1-phenylpent-1-ene ( 1 ) and (Z)-2-lithio-1-(2-lithiophenyl)ethene ( 2 ) were investigated by one- and two-dimensional 1H-, 13C-, and 6Li-NMR spectroscopy. In Et2O, both systems form dimers which show homonuclear scalar 6Li,6Li spin-spin coupling. In the case of 2 , extensive 6Li,1H coupling is observed. In tetrahdrofuran and in the presence of 2 mol of N,N,N′,N′-tetramethylethylylenediamine (tmeda), the dimeric structure of 1 coexists with a monomer. The activation parameters for intra-aggregate exchange in the dimers of 1 and 2 ( 1 (Et2O): ΔH≠ = 62.6 ± 13.9 kJ/mol, ΔS≠ = 5.8 ± 14.0 J/mol K, ΔG≠(263) = 61.1 kJ/mol; 2 (dimethoxyethane): ΔH≠ = 36.9 ± 6.5 kJ/mol, ΔS≠ = ?61 ± 25 J/mol K, ΔG≠(263) = 54.0 kJ/mol) and the thermodynamic parameters for the dimer-monomer equilibrium for 1 (ΔH°; = 26.7 ± 5.5 kJ/mol, ΔS° = 63 ± 27 J/mol K), where the monomer is favored at low temperature, were determined by dynamic NMR studies.  相似文献   

20.
The enthalpy of formation at 298.15 K of the polymer Al13O4(OH)28(H2O)3+8 and an amorphous aluminium trihydroxide gel was studied using an original differential calorimetric method, already developed for adsorption experiments, and aluminium-27 NMR spectroscopy data. ΔHf “Al13” (298.15 K) = ? 602 ± 60.2 kJ mole?1 and ΔHf Al(OH)3 (298.15 K) = ? 51 ± 5 kJ mole?1. Using theoretical values of ΔGR “Al13” and ΔGR Al(OH)3, we calculated ΔGf “Al13” (298.15 K) = ? 13282 kJ mole?1; ΔSf “Al13” (298.15 K) = + 42.2 kJ mole?1; ΔGf Al(OH)3 (298.15 K) = ? 782.5 kJ mole?1; and ΔSf Al(OH)3 (298.15 K) = + 2.4 kJ mole?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号