首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary : Recent studies on ion transport across multilayered membranes of azamacrocycles and polyelectrolytes are reviewed. Membranes were built up on porous PAN/PET supports using electrostatic layer-by-layer assembly. Two types of separation membranes were prepared, type I consisting of protonated hexaazacyclooctadecane and polyvinylsulfate, and type II of hexaazacyclo-octadecane hexaacetic acid and protonated polyvinylamine. Ion transport was studied under dialysis, nanofiltration and reverse osmosis conditions. Type I membranes were suitable for efficient separation of mono- and divalent anions, whereas type II membranes were suited for separation of mono- from di- and trivalent cations.  相似文献   

2.
The relationship between the surface charge of potassium titanyl phosphate (KTP), studied on powder suspensions, and filtration properties of KTP nanofiltration membranes was studied. An experimental investigation of KTP powder characterization in different electrolytic solutions is presented: electrophoretic measurements show that the colloid particles are negatively charged whatever the solution pH, although they present a point of zero charge about 7.8. The selectivity of the membrane depends on the charge and size of ions. The interactions between the membrane and charged species have to be taken into account to explain the transfer through the membrane. With salts having the same cation, the rejection is higher for divalent anions than for monovalent anions. The best rejection rate is observed for applied pressure lower than 7 bar.  相似文献   

3.
By means of contact angle measurements with water and aqueous salt solutions, it is shown that plurivalent cations increase the hydrophobicity of negatively charged phospholipid vesicle membranes (consisting of phosphatidic acid, PA, or of phosphatidylserine, PS), but does not influence the hydrophobicity of neutral phospholipid membranes, (e.g., phosphatidylcholine, PC, at up to 200 mM of CaCl2). The hydrophobizing action of cations on PA and PS membranes is concomitant with the reduction in (negative) zeta potential with increasing cation concentrations. Trivalent cations, La3+, showed more effective in hydrophobizing negatively charged phospholipid membranes than divalent and monovalent cations. Except for hydrogen ions, monovalent cations do not show any appreciable hydrophobizing effect on lipid vesicle membranes at concentrations less than 1 M. The hydrophobizing effect on phospholipid membranes can also be used to explain the induction of lateral phase separation into patches of different phospholipids as well as cell fusion.  相似文献   

4.
A streaming potential analyzer has been used to investigate the effect of solution chemistry on the surface charge of four commercial reverse osmosis and nanofiltration membranes. Zeta potentials of these membranes were analyzed for aqueous solutions of various chemical compositions over a pH range of 2 to 9. In the presence of an indifferent electrolyte (NaCl), the isoelectric points of these membranes range from 3.0 to 5.2. The curves of zeta potential versus solution pH for all membranes display a shape characteristic of amphoteric surfaces with acidic and basic functional groups. Results with salts containing divalent ions (CaCl2, Na2SO4, and MgSO4) indicate that divalent cations more readily adsorb to the membrane surface than divalent anions, especially in the higher pH range. Three sources of humic acid, Suwannee River humic acid, peat humic acid, and Aldrich humic acid, were used to investigate the effect of dissolved natural organic matter on membrane surface charge. Other solution chemistries involved in this investigation include an anionic surfactant (sodium dodecyl sulfate) and a cationic surfactant (dodecyltrimethylammonium bromide). Results show that humic substances and surfactants readily adsorb to the membrane surface and markedly influence the membrane surface charge.  相似文献   

5.
Alternating adsorption of polyanions and polycations on porous supports provides a convenient way to prepare ion-selective nanofiltration membranes. This work examines optimization of ultrathin, multilayer polyelectrolyte films for monovalent/divalent cation separations relevant to water softening. Membranes composed of five bilayers of poly(styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH) on porous alumina supports allow a solution flux of 0.85 m3/(m2 day) at 4.8 bar, and exhibit 95% rejection of MgCl2 along with a Na+/Mg2+ selectivity of 22. Similar results were obtained in Na+/Ca2+ separations. PSS/poly(diallyl-dimethylammonium chloride) (PDADMAC) films permit higher fluxes than PSS/PAH systems due to the higher swelling of films containing PDADMAC, but the Mg2+ rejection by PSS/PDADMAC membranes is less than 45%. However, capping PSS/PDADMAC films with a bilayer of PSS/PAH yields Mg2+ rejections and Na+/Mg2+ selectivities that are typical of pure PSS/PAH membranes. Separation performance can be optimized through control over deposition conditions (pH and supporting electrolyte concentration) and the charge of the outer layer since Donnan exclusion is a major factor in monovalent/divalent cation selectivity. Streaming potential measurements demonstrate that the magnitude of positive surface charge increases with increasing concentrations of Mg2+ in solution or when the outer polycation layer is deposited from a solution of high ionic strength.  相似文献   

6.
7.
The binding of a negatively charged residue, aspartic acid (Asp) in tripeptide arginine-glycine-aspartic acid, onto a negatively charged hydroxylated rutile (110) surface in aqueous solution, containing divalent (Mg(2+), Ca(2+), or Sr(2+)) or monovalent (Na(+), K(+), or Rb(+)) cations, was studied by molecular dynamics (MD) simulations. The results indicate that ionic radii and charges will significantly affect the hydration, adsorption geometry, and distance of cations from the rutile surface, thereby regulating the Asp/rutile binding mode. The adsorption strength of monovalent cations on the rutile surface in the order Na(+) > K(+) > Rb(+) shows a "reverse" lyotropic trend, while the divalent cations on the same surface exhibit a "regular" lyotropic behavior with decreasing crystallographic radii (the adsorption strength of divalent cations: Sr(2+) > Ca(2+) > Mg(2+)). The Asp side chain in NaCl, KCl, and RbCl solutions remains stably H-bonded to the surface hydroxyls and the inner-sphere adsorbed compensating monovalent cations act as a bridge between the COO(-) group and the rutile, helping to "trap" the negatively charged Asp side chain on the negatively charged surface. In contrast, the mediating divalent cations actively participate in linking the COO(-) group to the rutile surface; thus the Asp side chain can remain stably on the rutile (110) surface, even if it is not involved in any hydrogen bonds with the surface hydroxyls. Inner- and outer-sphere geometries are all possible mediation modes for divalent cations in bridging the peptide to the rutile surface.  相似文献   

8.
The constants of anion-exchange extraction of divalent ions by quaternary ammonium salts of various structures were determined. The exchange constants depend significantly on steric accessibility of the exchange site. For the exchange of small-size anions, the affinity of the ion exchanger for divalent ions is higher than for monovalent ions. For large divalent anions, the exchange constant may increase or decrease, depending on the size of a monovalent anion. The obtained results are explained by the specifics of the ion-pair association of monovalent and divalent anions with quaternary ammonium cations.  相似文献   

9.
Gold electrodes were chemically modified with thioctic acid monolayer designed to mimic biological ion-channel membranes. The technique was then used in the determination of alkali, alkaline earth, thallium(I), and lanthanum metal cations as analytes. Cyclic voltammograms (CV) of [Fe(CN)6]3− an electroactive marker, were measured in the presence of the various types of analyte cations. In the absence of the analyte cation, electrostatic repulsion between the marker anions and the carboxylate groups of the receptor monolayer hindered the approach of the marker anion to the electrode surface and hence hindered its reduction. The modified electrodes responded well to the metal cations except the alkali metal cations. The sensors could detect the trivalent cation La3+ at concentrations as low as 10−8 M. The response of the sensor to the metal cations increase in the order alkali metal3+ can be discriminated in the ratio 1:100. This makes it possible to determine the trivalent ion in a sample matrix containing monovalent and divalent cations. Thallium(I) ion showed marked deviation in its response as compared to monovalent ions of the alkali metals. The ion-channel sensor based on self-assembled monolayer of thioctic acid therefore offers a potential alternative technique for the selective determination of metal ions.  相似文献   

10.
Polypyrrole composite cation- and anion-exchange membranes (CEM and AEM), in which polypyrrole (PPY) coated on one surface of the membrane as a thin layer, were prepared by chemical polymerization of pyrrole in the presence of high oxidant concentration (Na2S2O8). Existence of polypyrrole layer on the both types of ion-exchange membranes were confirmed by recording their coating density, SEM images and conductivity. These membranes were extensively characterized by recording their properties such as water uptake, ion-exchange capacity, contact angle, permselectivity and membrane conductivity as a function of polymerization time such as. It was observed that due to coating of PPY for 2 h, membrane permselectivity of CEM for NaCl (0.907) was reduced to 0.873, while it was increased from 0.747 to 0.889 in the case of AEM. Similar behaviors were also obtained for bi-valent electrolytes. Electrodialysis experiments were also conducted with polypyrrole composite ion-exchange membranes using mixed electrolytic systems. Relative dialytic rates for NaCl with respect to other bi-valent electrolyte were varied in between 5 and 8 (depending on bi-valent electrolyte), which suggested the feasible and efficient separation of mono-valent from bi-valent electrolyte. Slower electro-migration of bi-valent electrolyte (CaCl2, MgCl2 and CuCl2) in comparison to NaCl was explained on the basis of synergetic effect of sieving of bulkier bi-valent cations by tight and rigid polypyrrole layer and the difference in electrostatic and hydrophobic–hydrophilic repulsion force between bi-valent cations and mono-valent cation. It was concluded that these composite membranes are suitable for the efficient separation of same type of charged ions by electro-driven separation techniques.  相似文献   

11.
The application of laboratory-made zirconium-modified silica gels (Zr-silicas) as cation-exchange stationary phases to ion chromatography with conductimetric detection (IC–CD) for common mono- and divalent cations (Li+, Na+, NH4+, K+, Mg2+ and Ca2+) was carried out. Zr-silicas were prepared by the reaction of the silanol group on the surface of silica gel with zirconium tetrabutoxide (Zr(OCH2CH2CH2CH3)4) in ethanol. Zr-silica adsorbed on 10 mg zirconium g−1 silica gel was a suitable cation-exchange stationary phase in IC–CD for the separation of these mono- and divalent cations. Excellent simultaneous separation and highly sensitive detection for these cations were achieved in 10 min by IC–CD using a Zr-silica column (150×4.6 mm I.D.) and 10 mM tartaric acid containing 10 mM 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane) as the eluent. The proposed IC–CD method was successfully applied to the determination of major mono- and divalent cations in natural water samples.  相似文献   

12.
In a combined experimental and theoretical study, we show that capacitive charging of porous electrodes in multicomponent electrolytes may lead to the phenomenon of time-dependent ion selectivity of the electrical double layers (EDLs) in the electrodes. This effect is found in experiments on capacitive deionization of water containing NaCl/CaCl(2) mixtures, when the concentration of Na(+) ions in the water is five times the Ca(2+)-ion concentration. In this experiment, after applying a voltage difference between two porous carbon electrodes, first the majority monovalent Na(+) cations are preferentially adsorbed in the EDLs, and later, they are gradually replaced by the minority, divalent Ca(2+) cations. In a process where this ion adsorption step is followed by washing the electrode with freshwater under open-circuit conditions, and subsequent release of the ions while the cell is short-circuited, a product stream is obtained which is significantly enriched in divalent ions. Repeating this process three times by taking the product concentrations of one run as the feed concentrations for the next, a final increase in the Ca(2+)/Na(+)-ratio of a factor of 300 is achieved. The phenomenon of time-dependent ion selectivity of EDLs cannot be explained by linear response theory. Therefore, a nonlinear time-dependent analysis of capacitive charging is performed for both porous and flat electrodes. Both models attribute time-dependent ion selectivity to the interplay between the transport resistance for the ions in the aqueous solution outside the EDL, and the voltage-dependent ion adsorption capacity of the EDLs. Exact analytical expressions are presented for the excess ion adsorption in planar EDLs (Gouy-Chapman theory) for mixtures containing both monovalent and divalent cations.  相似文献   

13.
A general and sensitive method for detecting divalent anions by ESI-MS and LC/ESI-MS as positive ions has been developed. The anions are paired with tricationic reagents to form positively charged complexes. In this study, four tricationic reagents, 2 trigonal and 2 linear, were used to study a wide variety of anions, such as disulfonates, dicarboxylates, and inorganic anions. The limits of detection for many of the anions studied were often improved by tandem mass spectrometry. Tricationic pairing agents can also be used with chromatography to enhance the detection of anions. The tricationic reagents were also used to detect monovalent anions by monitoring the doubly charged positive complex. The limits of detection for some of the divalent anions by this method are substantially lower than by other current analytical techniques.  相似文献   

14.
Our recent studies in the field of ultrathin membranes prepared upon layer-by-layer assembly of various polyionic compounds such as polyelectrolytes, calixarenes and polyelectrolytes, and metal hexacyanoferrate salts such as Prussian Blue are reviewed. It is demonstrated that polyelectrolyte multilayers can be used (a) as nanofiltration and reverse osmosis membranes suitable for water softening and seawater desalination and (b) as molecular sieves and ion sieves for size-selective separation of neutral and charged aromatic compounds. Furthermore, hybrid membranes of p-sulfonato-calixarenes and cationic polyelectrolytes showing specific host-guest interactions with permeating ions are described. The membranes exhibit high selectivities for distinct metal ions. Finally, it is demonstrated that purely inorganic membranes of Prussian Blue (PB) and analogues can be prepared upon multiple sequential adsorption of transition metal cations and hexacyanoferrate anions. Due to the porous lattice of PB, the membranes are useful as ion filters able to separate cesium from sodium ions, for example.  相似文献   

15.
Adsorption fo tertriary amine local anesthetics and Ca2+ onto lipid membranes having various negative surface charge densities was studied by measuring lipid vesicle electrophoretic mobility.

As the surface charge density of the membrane was reduced, the adsorption of the local anesthetics dominated that of the divalent cation. For a relatively high negatively charged membrane, the adsorption of both local anesthetic and Ca2+ became comparable and competitive.

It is deduced that the major factor for the adsorption of local anesthetic onto lipid membranes is due to simple physical partitioning between aqueous and membrane phases, and not due to ionic type of binding as seen for divalent cations with membranes. However, the adsorption of anesthetics is influenced by the surface potential of membranes which is in turn related to the surface concentration of local anesthetics near the membrane.

The amounts of competitive adsorption of divalent cations and local anesthetics are analyzed with respect to their bulk concentrations and various surface charge densities of the membranes. With the results of the above studies, a possible interpretation for the interaction site as well as the mode of adsorption of local anesthetics onto axon membranes is made in relation to divalent cation concentrations in the bulk phases.  相似文献   


16.
We developed a novel measurement method of the Donnan potential difference at a charged membrane/salt solution interface. The method can measure the potential under the condition that the membrane charge density is much lower than the KCl concentration of the salt bridge. This method is very useful for obtaining the effective charge density of each layer of a bipolar membrane. The present experiments in a system of a negatively charged poly(vinyl alcohol) membrane and a single salt solution of KCl, NaCl, LiCl, CaCl2 and LaC3 revealed that the membrane effective charged density has the same value for all the ions. The experiments in mixed KCl and CaCl2 solution revealed that the potential in the system is governed mainly by the concentration of the counterion having the highest valence in the system.  相似文献   

17.
Highly charged cation permeable composite membranes were prepared by blending of sulfonated poly(ether sulfone) (SPES) with sulfonated poly(ether ether ketone) (SPEEK) in 0 to 90% weight ratio, to adjust the hydrophobic properties and ion selective nature. Extent of sulfonation was confirmed by 1H NMR and ion exchange capacity and degree of sulfonation depending on blending composition. These membranes were characterized as a function of weight fraction of SPEEK by recording ion-exchange capacity, water uptake, thermogravimetric analysis, membrane conductivity and membrane potential in equilibration with different electrolytic solutions. Membrane permselectivity and solute flux were estimated using these data on the basis of non-equilibrium thermodynamic principles and for observing the selectivity of different membranes for mono- or bivalent counter-ions. It was observed that relative selectivity for monovalent in comparison to bivalent counter-ions were increased with the decrease in SPEEK content in the composite membrane matrix. The range of SPEEK content in the blend from 60 to 80% appears the most suitable for the selective separation of monovalent ions from bivalent ions. Furthermore, highly charged nature and stabilities of these membranes extend their applications for the electro-assisted separations of similarly charged ions as well as other electro-membrane processes.  相似文献   

18.
A lot of experiments were investigated to show the behaviour of an ultrafiltration membrane during the filtration of pure salt solutions. What happens when the filtered solution contains several ions?

In this paper, results are given concerning the filtration of mixtures of two salts solutions, salts with a common anion: NaCl + CaCl2 and Na2SO4 + CaSO4.

The surface charge of the membrane is characterized by streaming potential measurements and rejection rates by means of chromatography. These results confirm the adsorption of divalent ions on the surface and a good selectivity for divalent cations.  相似文献   


19.
The distribution of counterions in solutions of high molecular mass hyaluronic acid, in near-physiological conditions where mono- and divalent ions are simultaneously present, is studied by small angle neutron scattering and anomalous small angle x-ray scattering. The solutions contain either sodium or rubidium chloride together with varying concentrations of calcium or strontium chloride. The effects of monovalent-divalent ion exchange dominate the amplitude and the form of the counterion cloud. In the absence of divalent ions, the shape of the anomalous scattering signal from the monovalent ions is consistent with the distribution calculated from the Poisson-Boltzmann equation, as found by other workers. In mixtures of monovalent and divalent ions, however, as the divalent ion concentration increases, both the diameter and the amplitude of the monovalent ion cloud decrease. The divalent counterions always occupy the immediate neighborhood of the charged polyanion. Above a given concentration their anomalous scattering signal saturates. Even in a large excess of divalent ions, ion exchange is incomplete.  相似文献   

20.
Removal of metal ions from water can not only alleviate the scaling problem of domestic and industrial water, but also solve the water safety problem caused by heavy metal ion pollution. Here, we fabricate a positively charged nanofiltration membrane via surfactant-assembly regulated interfacial polymerization(SARIP) of 2-methylpiperazine(MPIP) and trimesoyl chloride(TMC). Due to the existence of methyl substituent, MPIP has lower reactive activity than piperazine(PIP) but stronger affinity to hexane, resulting in a nanofiltration(NF) membrane with an opposite surface charge and a loose polyamide active layer. Interestingly, with the help of sodium dodecyl sulfate(SDS) assembly at the water/hexane, the reactivity between MPIP and TMC was obviously increased and caused in turn the formation of a positively charged polyamide active layer with a smaller pore size, as well as with a narrower pore size distribution. The resulting membrane shows a highly efficient removal of divalent cations from water, of which the rejections of MgCl2, CoCl2 and NiCl2 are higher than 98.8%, 98.0% and 98.0%, respectively, which are better than those of most of other positively charged NF membranes reported in literatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号