首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel luminescent microporous lanthanide metal–organic framework (Ln‐MOF) based on a urea‐containing ligand has been successfully assembled. Structural analysis revealed that the framework features two types of 1D channels, with urea N?H bonds projecting into the pores. Luminescence studies have revealed that the Ln‐MOF exhibits high sensitivity, good selectivity, and a fast luminescence quenching response towards Fe3+, CrVI anions, and picric acid. In particular, in the detection of Cr2O72? and picric acid, the Ln‐MOF can be simply and quickly regenerated, thus exhibiting excellent recyclability. To the best of our knowledge, this is the first example of a multi‐responsive luminescent Ln‐MOF sensor for Fe3+, CrVI anions, and picric acid based on a urea derivative. This Ln‐MOF may potentially be used as a multi‐responsive regenerable luminescent sensor for the quantitative detection of toxic and harmful substances.  相似文献   

2.
A luminescence‐sensing process based on coordination compound [H2N(CH3)2]3[Tb(dipic)3] was developed. It shows fast response (within 1 min), high selectivity, and is ultrasensitive to detect Fe3+ or Cr3+ in aqueous solution and living cells (KSV values are calculated to be 3.6×104 L mol?1 for Fe3+ and 1.9×104 L mol?1 for Cr3+). The whole recognition process has been witnessed through electrospray ionization mass spectrometry (ESI‐MS) analysis, and the ligand‐transfer‐induced luminescence‐quenching mechanism is interpreted. This work contributes to extend the potential applications of lanthanide coordination compounds (LnCCs) in the fields of biological and environmental technologies.  相似文献   

3.
A new family of resorcin[4]arene‐based metal–organic frameworks (MOFs), namely, [Eu(HL)(DMF)(H2O)2] ? 3 H2O ( 1 ), [Tb(HL)(DMF)(H2O)2] 3 H2O ( 2 ), [Cd4(L)2(DMF)4(H2O)2] 3 H2O ( 3 ) and [Zn3(HL)2(H2O)2] 2 DMF ? 7 H2O ( 4 ), have been constructed from a new resorcin[4]arene‐functionalized tetracarboxylic acid (H4L=2,8,14,20‐tetra‐ethyl‐6,12,18,24‐tetra‐methoxy‐4,10,16,22‐tetra‐carboxy‐methoxy‐calix[4]arene). Isostructural 1 and 2 exhibit charming 1D motifs built with the cup‐like HL3? anions and rare earth cations. Compounds 3 and 4 show a unique sandwich‐based 2D layer and a fascinating 3D framework, respectively. Remarkably, compounds 1 and 2 display intensive red and green emissions triggered by the efficient antenna effect of organic ligands under UV light. More importantly, systematic luminescence studies demonstrate that Ln‐MOFs 1 and 2 , as efficient multifunctional fluorescent materials, show highly selective and sensitive sensing of Fe3+, polyoxometalates (POMs), and acetone, which represents a rare example of a sensor for quantitatively detecting three different types of analytes. This is also an exceedingly rare example of Fe3+ and POMs detection in aqueous solutions employing resorcin[4]arene‐based luminescent Ln‐MOFs. Furthermore, the possible mechanism of the sensing properties is deduced.  相似文献   

4.
A water stable tetrazolate‐containing metal‐organic framework, [Cd2(L)(OH)(H2O)2]n ( 1 ) [H3L = 5‐(4‐(tetrazol‐5‐yl)phenyl)isophthalic acid], was synthesized under solvothermal conditions and structurally characterized. Compound 1 displays a three dimensional porous network with one dimensional tubular channels based on trinuclear cluster [Cd33‐OH)N4C] units. Notably, 1 exhibits highly sensitive response to Cu2+ and Cr2O72– through luminescence quenching effects with the detection limit of 0.666 ppm for Cu2+ and 0.846 ppm for Cr2O72–, respectively. The possible mechanism of the luminescence quenching was discussed in detail.  相似文献   

5.
Novel luminescence‐functionalized metal–organic frameworks (MOFs) with superior electrogenerated chemiluminescence (ECL) properties were synthesized based on zinc ions as the central ions and tris(4,4′‐dicarboxylicacid‐2,2′‐bipyridyl)ruthenium(II) dichloride ([Ru(dcbpy)3]2+) as the ligands. For potential applications, the synthesized MOFs were used to fabricate a “signal‐on” ECL immunosensor for the detection of N‐terminal pro‐B‐type natriuretic peptide (NT‐proBNP). As expected, enhanced ECL signals were obtained through a simple fabrication strategy because luminescence‐functionalized MOFs not only effectively increased the loading of [Ru(dcbpy)3]2+, but also served as a loading platform in the ECL immunosensor. Furthermore, the proposed ECL immunosensor had a wide linear range from 5 pg mL?1 to 25 ng mL?1 and a relatively low detection limit of 1.67 pg mL?1 (signal/noise=3). The results indicated that luminescence‐functionalized MOFs provided a novel amplification strategy in the construction of ECL immunosensors and might have great prospects for application in bioanalysis.  相似文献   

6.
A common drawback of paper‐based separation devices is their poor detection limit. In this study, we combined field‐amplified sample stacking with moving reaction boundary electrophoresis on a paper chip with six array channels for the parallel separation and concentration of multiple samples. With a new hyphenated technique, the brown I2 from the Fe3+/I oxidation–reduction reaction emerged near the boundary between the dilute ethylene diamine tetraacetic acid and potassium iodide and highly concentrated KCl solutions. For the separation and concentration of three components, Cr3+, Cu2+, and Fe3+, the Fe3+ detection limit was improved at least 266‐fold by comparing the hyphenated technique with moving reaction boundary electrophoresis. The detection limit of Fe3+ was found to be as low as 0.34 ng (20 μM) on the paper chip. We also demonstrated the analysis of a real sample of four metal ions, with detection limits as follows: 0.16 μg Cr3+, 1.5 μg Ni2+, 0.64 μg Cu2+, and 1.5 μg Co2+. The synergy of field‐amplified sample stacking and moving reaction boundary electrophoresis in the micron paper‐based array channels dramatically improved the detection limit and throughput of paper‐based electrophoresis.  相似文献   

7.
合成了2个镉(Ⅱ)金属有机骨架化合物{[Cd(L)(fma)]·0.5H2O}n1)和{[Cd(L)0.5(sdb)]·DMF}n2)(L=E,E-2,5-二己氧基-1,4-双(2-乙烯-吡啶基)苯,H2fma=延胡酸,H2sdb=4,4''-磺酰基二苯甲酸),研究了它们在金属离子和有机分子的发光传感中的应用。结果表明,Fe3+对配位聚合物12的发光强度有明显的猝灭作用。此外,聚合物12还对水杨醛具有明显的猝灭能力。  相似文献   

8.
Over the past two decades, the development of novel inorganic–organic hybrid porous crystalline materials or metal–organic frameworks (MOFs) using crystal engineering has provoked significant interest due to their potential applications as functional materials. In this context, luminescent MOFs as fluorescence sensors have recently received significant attention for the sensing of ionic species and small molecules. In this work, a new luminescent heterometallic zinc(II)–barium(II)‐based anionic metal–organic framework, namely poly[imidazolium [triaqua(μ6‐benzene‐1,3,5‐tricarboxylato)bariumtrizinc] tetrahydrate], {(C3H4N2)[BaZn3(C9H3O6)3(H2O)3]·4H2O}n ( 1 ), was synthesized under hydrothermal conditions and characterized. Compound 1 presents a three‐dimensional framework with an unprecedented (3,5)‐connected topology of the point symbol (3.92).(33.42.5.93.10), and exhibits `turn‐off' luminescence responses for the Cu2+ and Fe3+ ions in aqueous solution based on significantly different quenching mechanisms.  相似文献   

9.
The water‐stable 3D lanthanide‐organic framework (Ln‐MOF) {[Eu(bci)(H2O)] · 2H2O}n ( 1 ) [H2bci = bis(2‐carboxyethyl)isocyanurate] was synthesized under hydrothermal conditions. Compound 1 ‐ Eu exhibits a 3D open‐framework connected by Eu–(μ‐O)2–Eu chains and bci ligands. Meanwhile, 1 ‐ Eu exhibits highly efficient luminescent sensing for environmentally relevant Fe3+ and SCN ions through luminescence quenching. These results indicated that it could be utilized as a multi‐responsive luminescence sensor.  相似文献   

10.
Zhao  Fang-Hua  Han  Jian-Hui  Lin  Yu-Wen  Zou  Shao-Shuang  Liu  Tao  Li  Zhong-Lin 《Journal of Cluster Science》2021,32(6):1711-1721

Hydrothermally reaction of Cd(NO3)2·4H2O, pimelic acid (H2Pim) mixed with two N-containing ligands of 1,2-bis(2-methyl-imidazol-1-ylmethyl)benzene (1,2-mbix) or 1,3-bis(2-methyl-imidazol-1-ylmethyl)benzene (1,3-mbix) gave rise to two new Cd(II) MOFs, [Cd(Pim)(1,2-mbix)] (1) and [Cd(Pim)(1,3-mbix)]·H2O (2). Both MOFs were structurally characterized by IR and UV–Vis spectra, single-crystal and powder X-ray diffraction, thermogravimetric analyses. MOF 1 shows a fourfold interpenetrating dia network. Differently, MOF 2 shows a 2D?→?3D interdigitated architecture base on the 63 hcb layer when 1,2-mbix was replaced by 1,3-mbix. The luminescent properties of 1 and 2 have been investigated. Furthermore, the luminescent quenching experiments suggest both MOFs exhibit good selectivity and sensitivity to detect Fe3+ and Cr2O72? in water.

  相似文献   

11.
A new coordination polymer (CP), namely, [Cd(HL)(4,4′‐bipy)] ( 1 ) (H3L = 4‐(5‐carboxy‐pyridine‐3‐yloxy)‐phthalic acid, 4,4′‐bipy = 4,4′‐bipyridine), was synthesized employing a V‐shaped asymmetric tricarboxylic acid ligand under hydrothermal condition. Single‐crystal X‐ray diffraction analysis indicates that compound 1 exhibits a novel three‐dimensional (3D) framework with (3, 5)‐connected (63)(69 · 8) topology. Meanwhile, it shows high selectivity and sensitivity for oxoanion pollutants CrO42–, Cr2O72–, and MnO4 anions in aqueous solutions with detection limits of 4.12 × 10–6 M, 1.75 × 10–6 M, and 6.47 × 10–7 M, respectively. The high selectivity and low detection limit indicate that the compound is promising functional luminescence probe for CrO42–, Cr2O72–, and MnO4. The mechanisms of the quenching effect and sensing properties were discussed in detail.  相似文献   

12.
Nanoscale layered double hydroxides of FeII and AlIII (Fe–Al LDH) have been applied for removal of chromate (CrVI) from aqueous solution. Given the reaction stoichiometry, CrVI was completely reduced to CrIII and coprecipitated with FeIII and AlIII oxyhydroxides. The extent of CrVI removal decreased with increasing initial pH and decreasing molar ratio of CrVI/structural FeII in the LDH. The chromate reduction rate at different initial concentrations of CrVI was well described by the pseudo-second-order model with reaction rate constant ranging from 197.4 to 13.53 (mmol min)?1. Initial pH and substitution of various amounts of FeIII in the LDH structure had little effect on the reaction rate. Backtransformation of CrIII to CrVI by birnessite Mn oxide (δ-MnO2) after 40 days of reaction was less than 1% of the initial Cr (as CrIII solid), indicating high stability of the final reaction products and high efficiency of nanoscale Fe–Al LDHs for removal of chromate from aqueous solution.  相似文献   

13.
Three metal‐organic frameworks {[Cd( L )(glu)]?3 H2O} ( 1 ), {[Cd2( L )2(adi)2]?5 H2O} ( 2 ) and {[Cd( L )(sub)]?3 H2O?DMA } ( 3 ) ( L =pyridine‐3,5‐bis(5‐azabenzimidazole), H2glu=glutaric acid, H2adi=adipic acid and H2sub=suberic acid) were obtained under solvothermal conditions. Complex 1 shows a 2D (4,4) network constructing of Cd2‐glu and Cd‐ L chains. Complex 2 presents a 2‐fold interpenetrating 3D framework with pcu topology. Complex 3 is a 3D framework with cds topology. Three complexes with versatile structures were obtained by changing aliphatic dicarboxylate ligands with different lengths based on a N‐rich ligand. Moreover, the fluorescence measurements indicate that complex 1 is a good multifunctional chemosensor for the detection of Cr2O72? and MnO4? anions by fluorescence quenching effect, and ethylenediamine by fluorescence enhancement effect, with detection limits of 1.196 ppm, 0.551 ppm and 64.572 ppm, respectively. Both complexes 2 and 3 can selectively sense Cr2O72? anion with detection limits of 1.126 ppm for 2 and 0.831 ppm for 3 by a fluorescence quenching effect.  相似文献   

14.
A hydrophobic organic monomer GRBE with a polymerizable methacrylester moiety had been synthesized by reaction of rhodamine B‐ethanediamine with glycidyl methacrylate. A water‐soluble polymeric chemosensor poly(VP‐GRBE) had been prepared via copolymerization with a hydrophilic comonomer (vinylpyrrolidone) and GRBE, which was able to sense environmentally poisonous cations in completely aqueous media. The chemosensor was a derivative of rhodamine B, which behaved as a fluorescent and chromogenic sensor toward various heavy cations, particularly Cr3+, Fe3+, and Hg2+. Titration curves of Cr3+, Fe3+, and Hg2+ were constructed using rapid, cheap, and widely available technique of fluorescence spectroscopies. The detection limits for Cr3+, Fe3+, or Hg2+ ions were found to be 2.20 × 10?12, 2.39 × 10?12, and 1.11 × 10?12 mol/l in the same medium, respectively. Moreover, a colorimetric response from the polymeric chemosensor permitted the detection of Cr3+, Hg2+, or Fe3+ by “naked eye” because of the development of a pink or brown yellow color when Cr3+, Hg2+, or Fe3+ cations interacted with the copolymer in aqueous media. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
《中国化学会会志》2018,65(5):597-602
A novel Cr3+‐selective ratiometric fluorescent chemosensor 1‐substitued‐2‐carbazoleylbenzoimidazole ( L ) based on benzimidazole and carbazole was synthesized and characterized by nuclear magnetic resonance (1H/13C NMR), Fourier transform infrared spectrometry (FTIR), and mass spectroscopy. L could selectively detect Cr3+ over other metal ions by UV–vis absorption and fluorescence emission spectroscopic methods in CH3CN. L showed ratiometric fluorescent recognition of Cr3+; the fluorescent responses could be observed by naked eye under a UV lamp. The binding stoichiometry ratio of the L –Cr3+ complex was found to be 1:1 according to Job’s plot and MALDI‐TOF MS analysis. The results of DFT calculation supported this conclusion.  相似文献   

16.
The potential emergence of fluorescence-based techniques has propelled research towards developing probes that can sense trace metal ions specifically. Although luminescent metal-organic frameworks (MOFs) are well suited for this application, the role of building blocks towards detection is not fully understood. In this work, a systematic screening by varying number of Lewis basic (pyridyl-N atoms) sites is carried out in a series of isostructural, robust UiO-67 MOFs, and targeting a model metal ion-Fe3+. All the three fluorescent MOFs are seen to present quenching response towards Fe3+ ions in water. However, UiO-67@N exhibits highly selective and sensitive response, whereas emission of both UiO-67 and UiO-67@NN is quenched by several metal ions. Detailed experimental and theoretical mechanistic investigation is carried out in addition to demonstration of UiO-67@N being able to sense trace amount of Fe3+ ions in synthetic biological water sample. Further, UiO-67@N based mixed-matrix membrane (MMM) has been prepared and employed to mimic the real time Fe3+ ions detection in water.  相似文献   

17.
Graphene quantum dots (GQDs) have been prepared from graphene oxide (GO) and characterized by standard analytical techniques. The size of the prepared GQDs ranges from 2-10?nm. Aqueous dispersion of GQDs exhibited excitation-dependent emission behavior. Emission intensity of the aqueous dispersion found stable for the examined duration of about four months. GQDs exhibited selective recognition of Fe3+ and Cr3+ out of various common ions such as alkali, alkaline-earth and transition metal ions in aqueous medium through fluorescence quenching. The lower limit of detection of Fe3+ is 1?µM and that of Cr3+ is 4?µM.  相似文献   

18.
Effective detection of organic/inorganic pollutants, such as antibiotics, nitro‐compounds, excessive Fe3+ and MnO4?, is crucial for human health and environmental protection. Here, a new terbium(III)–organic framework, namely [Tb(TATAB)(H2O)]?2H2O ( Tb‐MOF , H3TATAB=4,4′,4′′‐s‐triazine‐1,3,5‐triyltri‐m‐aminobenzoic acid), was assembled and characterized. The Tb‐MOF exhibits a water‐stable 3D bnn framework. Due to the existence of competitive absorption, Tb‐MOF has a high selectivity for detecting Fe3+, MnO4?, 4‐nirophenol and nitroimidazole (ronidazole, metronidazole, dimetridazole, ornidazole) in aqueous through luminescent quenching. The results suggest that Tb‐MOF is a simple and reliable reagent with multiple sensor responses in practical applications. To the best of our knowledge, this work represents the first TbIII‐based MOF as an efficient fluorescent sensor for detecting metal ions, inorganic anions, nitro‐compounds, and antibiotics simultaneously.  相似文献   

19.
A water‐stable luminescent terbium‐based metal–organic framework (MOF), {[Tb(L1)1.5(H2O)] ? 3 H2O}n (Tb‐MOF), with rod‐shaped secondary building units (SBUs) and honeycomb‐type tubular channels has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. The high green emission intensity and the microporous nature of the Tb‐MOF indicate that it can potentially be used as a luminescent sensor. In this work, we show that Tb‐MOF can selectively sense Fe3+ and Al3+ ions from mixed metal ions in water through different detection mechanisms. In addition, it also exhibits high sensitivity for 2,4,6‐trinitrophenol (TNP) in the presence of other nitro aromatic compounds in aqueous solution by luminescence quenching experiments.  相似文献   

20.
A series of 2D isomorphous MOFs [M (HBTC)(BMIOPE)·DMF·H2O]n (M = Zn ( 1 ), Zn0.7Co0.3 ( 2 ), Zn0.5Co0.5 ( 3 ), Zn0.3Co0.7 ( 4 ), Co ( 5 ), H3BTC = 1,3,5-benzenetricarboxylic acid, BMIOPE = 4,4′-bis(2-methylimidazol-1-yl)diphenyl ether) were synthesized to investigate the correction between the center metal ions and the photocatalytic behaviors. The photocatalytic results show that with the increase of Co2+ content, the photodegradation properties are continuously improved from 1 to 5 , which fully indicate that only changing metal ions could regulate the photodegradation properties. In detail, 1 is an inactive photocatalyst to degrade methylene blue (MB), while 5 exhibits preeminent photocatalytic properties under visible light irradiation. Moreover, 1 shows good selective sensing toward Fe3+, Cr3+, UO22+, CrO42− and Cr2O72− ions in aqueous solution. To the best of our knowledge, 1 is the first MOF example for the optical detection of Fe3+, Cr3+, UO22+, CrO42− and Cr2O72− ions in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号