首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kainic acid, the flagship member of the kainoid family of natural neurochemicals, is a widely used neuropharmacological agent that helped unravel the key role of ionotropic glutamate receptors, including the kainate receptor, in the central nervous system. Worldwide shortages of this seaweed natural product in the year 2000 prompted numerous chemical syntheses, including scalable preparations with as few as six‐steps. Herein we report the discovery and characterization of the concise two‐enzyme biosynthetic pathway to kainic acid from l ‐glutamic acid and dimethylallyl pyrophosphate in red macroalgae and show that the biosynthetic genes are co‐clustered in genomes of Digenea simplex and Palmaria palmata. Moreover, we applied a key biosynthetic α‐ketoglutarate‐dependent dioxygenase enzyme in a biotransformation methodology to efficiently construct kainic acid on the gram scale. This study establishes both the feasibility of mining seaweed genomes for their biotechnological prowess.  相似文献   

2.
Mining microbial genomes including those of Streptomyces reveals the presence of a large number of biosynthetic gene clusters. Unraveling this genetic potential has proved to be a useful approach for novel compound discovery. Here, we report the heterologous expression of two similar P450‐associated cyclodipeptide synthase‐containing gene clusters in Streptomyces coelicolor and identification of eight rare and novel natural products, the C3‐guaninyl indole alkaloids guanitrypmycins. Expression of different gene combinations proved that the cyclodipeptide synthases assemble cyclo‐l ‐Trp‐l ‐Phe and cyclo‐l ‐Trp‐l ‐Tyr, which are consecutively and regiospecifically modified by cyclodipeptide oxidases, cytochrome P450 enzymes, and N‐methyltransferases. In vivo and in vitro results proved that the P450 enzymes function as key biocatalysts and catalyze the regio‐ and stereospecific 3α‐guaninylation at the indole ring of the tryptophanyl moiety. Isotope‐exchange experiments provided evidence for the non‐enzymatic epimerization of the biosynthetic pathway products via keto–enol tautomerism. This post‐pathway modification during cultivation further increases the structural diversity of guanitrypmycins.  相似文献   

3.
An increased supply of scarce or inaccessible natural products is essential for the development of more sophisticated pharmaceutical agents and biological tools, and thus the development of atom‐economical, step‐economical and scalable processes to access these natural products is in high demand. Herein we report the development of a short, scalable total synthesis of (?)‐α‐kainic acid, a useful compound in neuropharmacology that is, however, limited in supply from natural resources. The synthesis features sequential platinum‐catalyzed direct allylic aminations and thermal ene‐cyclization, enabling the gram‐scale synthesis of (?)‐α‐kainic acid in six steps and 34 % overall yield.  相似文献   

4.
Spirotetronate and spirotetramate natural products include a multitude of compounds with potent antimicrobial and antitumor activities. Their biosynthesis incorporates many unusual biocatalytic steps, including regio‐ and stereo‐specific modifications, cyclizations promoted by Diels–Alderases, and acetylation‐elimination reactions. Here we focus on the acetate elimination catalyzed by AbyA5, implicated in the formation of the key Diels–Alder substrate to give the spirocyclic system of the antibiotic abyssomicin C. Using synthetic substrate analogues, it is shown that AbyA5 catalyzes stereospecific acetate elimination, establishing the (R)‐tetronate acetate as a biosynthetic intermediate. The X‐ray crystal structure of AbyA5, the first of an acetate‐eliminating enzyme, reveals a deviant acetyl esterase fold. Molecular dynamics simulations and enzyme assays show the use of a His‐Ser dyad to catalyze either elimination or hydrolysis, via disparate mechanisms, under substrate control.  相似文献   

5.
Enzyme‐catalyzed [4+2] cycloaddition has been proposed to be a key transformation process in various natural product biosynthetic pathways. Recently Fsa2 was found to be involved in stereospecific trans‐decalin formation during the biosynthesis of equisetin, a potent HIV‐1 integrase inhibitor. To understand the mechanisms by which fsa2 determines the stereochemistry of reaction products, we sought an fsa2 homologue that is involved in trans‐decalin formation in the biosynthetic pathway of an enantiomerically opposite analogue, and we found phm7, which is involved in the biosynthesis of phomasetin. A decalin skeleton with an unnatural configuration was successfully constructed by gene replacement of phm7 with fsa2, thus demonstrating enzymatic control of all stereochemistry in the [4+2] cycloaddition. Our findings highlight enzyme‐catalyzed [4+2] cycloaddition as a stereochemically divergent step in natural product biosynthetic pathways and open new avenues for generating derivatives with different stereochemistry.  相似文献   

6.
The GE81112 tetrapeptides are a small family of unusual nonribosomal peptide congeners with potent inhibitory activity against prokaryotic translation initiation. With the exception of the 3‐hydroxy‐l ‐pipecolic acid unit, little is known about the biosynthetic origins of the non‐proteinogenic amino acid monomers of the natural product family. Here, we elucidate the biogenesis of the 4‐hydroxy‐l ‐citrulline unit and establish the role of an iron‐ and α‐ketoglutarate‐dependent enzyme (Fe/αKG) in the pathway. Homology modelling and sequence alignment analysis further facilitate the rational engineering of this enzyme to become a specific 4‐arginine hydroxylase. We subsequently demonstrate the utility of this engineered enzyme in the synthesis of a dipeptide fragment of the antibiotic enduracidin. This work highlights the value of applying a bioinformatics‐guided approach in the discovery of novel enzymes and engineering of new catalytic activity into existing ones.  相似文献   

7.
Antifungal HSAF (heat‐stable antifungal factor, dihydromaltophilin) is a polycyclic tetramate macrolactam from the biocontrol agent Lysobacter enzymogenes. Its biosynthetic gene cluster contains only a single‐module polyketide synthase–nonribosomal peptide synthetase (PKS‐NRPS), although two separate hexaketide chains are required to assemble the skeleton. To address the unusual biosynthetic mechanism, we expressed the biosynthetic genes in two “clean” strains of Streptomyces and showed the production of HSAF analogues and a polyene tetramate intermediate. We then expressed the PKS module in Escherichia coli and purified the enzyme. Upon incubation of the enzyme with acyl‐coenzyme A and reduced nicotinamide adenine dinucleotide phosphate (NADPH), a polyene was detected in the tryptic acyl carrier protein (ACP). Finally, we incubated the polyene–PKS with the NRPS module in the presence of ornithine and adenosine triphosphate (ATP), and we detected the same polyene tetramate as that in Streptomyces transformed with the PKS‐NRPS alone. Together, our results provide evidence for an unusual iterative biosynthetic mechanism for bacterial polyketide–peptide natural products.  相似文献   

8.
Many biologically active small‐molecule natural products produced by microorganisms derive their activities from sugar substituents. Changing the structures of these sugars can have a profound impact on the biological properties of the parent compounds. This realization has inspired attempts to derivatize the sugar moieties of these natural products through exploitation of the sugar biosynthetic machinery. This approach requires an understanding of the biosynthetic pathway of each target sugar and detailed mechanistic knowledge of the key enzymes. Scientists have begun to unravel the biosynthetic logic behind the assembly of many glycosylated natural products and have found that a core set of enzyme activities is mixed and matched to synthesize the diverse sugar structures observed in nature. Remarkably, many of these sugar biosynthetic enzymes and glycosyltransferases also exhibit relaxed substrate specificity. The promiscuity of these enzymes has prompted efforts to modify the sugar structures and alter the glycosylation patterns of natural products through metabolic pathway engineering and enzymatic glycodiversification. In applied biomedical research, these studies will enable the development of new glycosylation tools and generate novel glycoforms of secondary metabolites with useful biological activity.  相似文献   

9.
The recently sequenced genomes of several Aspergillus species have revealed that these organisms have the potential to produce a surprisingly large range of natural products, many of which are currently unknown. We have found that A. nidulans produces emericellamide A, an antibiotic compound of mixed origins with polyketide and amino acid building blocks. Additionally, we describe the discovery of four previously unidentified, related compounds that we designate emericellamide C-F. Using recently developed gene targeting techniques, we have identified the genes involved in emericellamide biosynthesis. The emericellamide gene cluster contains one polyketide synthase and one nonribosomal peptide synthetase. From the sequences of the genes, we are able to deduce a biosynthetic pathway for the emericellamides. The identification of this biosynthetic pathway opens the door to engineering novel analogs of this structurally complex metabolite.  相似文献   

10.
Redox modifications are key complexity‐generating steps in the biosynthesis of natural products. The unique structure of rubratoxin A ( 1 ), many of which arise through redox modifications, make it a nanomolar inhibitor of protein phosphatase 2A (PP2A). We identified the biosynthetic pathway of 1 and completely mapped the enzymatic sequence of redox reactions starting from the nonadride 5 . Six redox enzymes are involved, including four α‐ketoglutarate‐ and iron(II)‐dependent dioxygenases that hydroxylate four sp3 carbons; one flavin‐dependent dehydrogenase that is involved in formation of the unsaturated lactone; and the ferric‐reductase‐like enzyme RbtH, which regioselectively reduces one of the maleic anhydride moieties in rubratoxin B to the γ‐hydroxybutenolide that is critical for PP2A inhibition. RbtH is proposed to perform sequential single‐electron reductions of the maleic anhydride using electrons derived from NADH and transferred through a ferredoxin and ferredoxin reductase pair.  相似文献   

11.
Metabolic profiling of Streptomyces sp. IB2014/016‐6 led to the identification of three new tetrahydroisoquinoline natural products, perquinolines A–C ( 1 – 3 ). Labelled precursor feeding studies and the cloning of the pqr biosynthetic gene cluster revealed that 1 – 3 are assembled by the action of several unusual enzymes. The biosynthesis starts with the condensation of succinyl‐CoA and l ‐phenylalanine catalyzed by the amino‐7‐oxononanoate synthase‐like enzyme PqrA, representing rare chemistry in natural product assembly. The second condensation and cyclization events are conducted by PqrG, an enzyme resembling an acyl‐CoA ligase. Last, ATP‐grasp RimK‐type ligase PqrI completes the biosynthesis by transferring a γ‐aminobutyric acid or β‐alanine moiety. The discovered pathway represents a new route for assembling the tetrahydroisoquinoline cores of natural products.  相似文献   

12.
Thiostrepton, a natural peptide macrocycle, is of great interest due to its structural complexity and numerous biological activities, including anti-bacterial, anti-tumor, and anti-plasmodial activities. The quinaldic acid (QA) moiety-containing side ring (loop 2) was proven to play an important role in carrying out these functions. Previously, we proposed biosynthetic logic for thiostrepton loop 2 and demonstrated the formation mechanism of QA. Herein, we report the discovery and efficient synthesis of a biologically active alkaloid, that is, a key intermediate involved in the thiostrepton biosynthetic pathway. A chemo-enzymatic method was performed to synthesize the molecule, and a series of analogs were prepared for bioassays, which included the examination of anti-bacterial and anti-tumor activities.  相似文献   

13.
Tetronate antibiotics, a growing family of natural products featuring a characteristic tetronic acid moiety, are of importance and of particular interest for their typical structures, especially the spirotetronate structure, and corresponding versatile biological activities. Considerable efforts have persistently performed since the first tetronate was isolated, to elucidate the biosynthesis of natural tetronate products, by isotope-labeled feeding experiments, genetical characterization of biosynthetic gene clusters, and biochemical reconstitution of key enzymatic catalyzed reactions. Accordingly, the biosynthesis of spirotetronates has been gradually determined, including biosynthesis of a polyketide-derived backbone for spirotetronate aglycone, incorporation of a glycerol-derived three-carbon unit into tetronic acid moiety, formation of mature aglycone via Diels-Alder-like reaction, and decorations of aglycone with various deoxysugar moieties. In this paper, the biosynthetic investigations of natural tetronates are well documented and a common biosynthetic route for this group of natural products is summarized accordingly.  相似文献   

14.
Enzymatic core components from trans‐acyltransferase polyketide synthases (trans‐AT PKSs) catalyze exceptionally diverse biosynthetic transformations to generate structurally complex bioactive compounds. Here we focus on a group of oxygenases identified in various trans‐AT PKS pathways, including those for pederin, oocydins, and toblerols. Using the oocydin pathway homologue (OocK) from Serratia plymuthica 4Rx13 and N‐acetylcysteamine (SNAC) thioesters as test surrogates for acyl carrier protein (ACP)‐tethered intermediates, we show that the enzyme inserts oxygen into β‐ketoacyl moieties to yield malonyl ester SNAC products. Based on these data and the identification of a non‐hydrolyzed oocydin congener with retained ester moiety, we propose a unified biosynthetic pathway of oocydins, haterumalides, and biselides. By providing access to internal ester, carboxylate pseudostarter, and terminal hydroxyl functions, oxygen insertion into polyketide backbones greatly expands the biosynthetic scope of PKSs.  相似文献   

15.
Fluorine has become an important element for the design of synthetic molecules for use in medicine, agriculture, and materials. Despite the many advantages provided by fluorine for tuning key molecular properties, it is rarely found in natural metabolism. We seek to expand the molecular space available for discovery through the development of new biosynthetic strategies that cross synthetic with natural compounds. Towards this goal, we engineered a microbial host for organofluorine metabolism and show that we can achieve the production of the fluorinated diketide 2‐fluoro‐3‐hydroxybutyrate at approximately 50 % yield. This fluorinated diketide can be used as a monomer in vivo to produce fluorinated poly(hydroxyalkanoate) (PHA) bioplastics with fluorine substitutions ranging from around 5–15 %. This system provides a platform to produce mm flux through the key fluoromalonyl coenzyme A (CoA) building block, thereby offering the potential to generate a broad range of fluorinated small‐molecule targets in living cells.  相似文献   

16.
The small‐molecule biosynthetic potential of most filamentous fungi has remained largely unexplored and represents an attractive source for the discovery of new compounds. Genome sequencing of Calcarisporium arbuscula, a mushroom‐endophytic fungus, revealed 68 core genes that are involved in natural product biosynthesis. This is in sharp contrast to the predominant production of the ATPase inhibitors aurovertin B and D in the wild‐type fungus. Inactivation of a histone H3 deacetylase led to pleiotropic activation and overexpression of more than 75 % of the biosynthetic genes. Sampling of the overproduced compounds led to the isolation of ten compounds of which four contained new structures, including the cyclic peptides arbumycin and arbumelin, the diterpenoid arbuscullic acid A, and the meroterpenoid arbuscullic acid B. Such epigenetic modifications therefore provide a rapid and global approach to mine the chemical diversity of endophytic fungi.  相似文献   

17.
Several medically and agriculturally important natural products contain pyrrole moieties. Precursor labeling studies of some of these natural products have shown that L-proline can serve as the biosynthetic precursor for these moieties, including those found in coumermycin A(1), pyoluteorin, and one of the pyrroles of undecylprodigiosin. This suggests a novel mechanism for pyrrole biosynthesis. The biosynthetic gene clusters for these three natural products each encode proteins homologous to adenylation (A) and peptidyl carrier protein (PCP) domains of nonribosomal peptide synthetases in addition to novel acyl-CoA dehydrogenases. Here we show that the three proteins from the undecylprodigiosin and pyoluteorin biosynthetic pathways are sufficient for the conversion of L-proline to pyrrolyl-2-carboxyl-S-PCP. This establishes a novel mechanism for pyrrole biosynthesis and extends the hypothesis that organisms use A/PCP pairs to partition an amino acid into secondary metabolism.  相似文献   

18.
The naphterpins and marinones are naphthoquinone meroterpenoids with an unusual aromatic oxidation pattern that is biosynthesized from 1,3,6,8‐tetrahydroxynaphthalene (THN). We propose that cryptic halogenation of THN derivatives by vanadium‐dependent chloroperoxidase (VCPO) enzymes is key to this biosynthetic pathway, despite the absence of chlorine in these natural products. This speculation inspired a total synthesis to mimic the naphterpin/marinone biosynthetic pathway. In validation of this biogenetic hypothesis, two VCPOs were discovered that interconvert several of the proposed biosynthetic intermediates.  相似文献   

19.
Natural products from marine animals show high potential for the development of new medicines, but drug development based on these compounds is commonly hampered by their low natural abundance. Since many of these metabolites are suspected or known to be produced by uncultivated bacterial symbionts, the rapidly growing diversity of sequenced prokaryotic genomes offers the opportunity to identify alternative, culturable sources of natural products computationally. In this work, we investigated the potential of using this sequenced resource to facilitate the production of meroterpenoid‐like compounds related to those from marine sources. This genome‐mining strategy revealed a biosynthetic gene cluster for highly modified cytotoxic meroterpenoids related to pelorol and other compounds isolated from sponges. Functional characterization of the terpene cyclase MstE showed that it generates an ent‐sterol‐like skeleton fused to an aryl moiety from an open‐chain precursor and is therefore a promising tool for the chemoenzymatic preparation of synthetically challenging chemical scaffolds.  相似文献   

20.
MtmOIV, the key oxygenase of the mithramycin biosynthetic pathway in Streptomyces argillaceus, was proven to act initially as Baeyer-Villiger monooxygenase, but may also catalyze various follow-up reaction steps. The reaction of the overexpressed pure His6-tagged enzyme with its substrate premithramycin B was studied. Various intermediates and products were isolated and physicochemically characterized, several of them being previously unknown compounds. This is the first example in which a bacterial enzyme was unequivocally proven to act as Baeyer-Villigerase with its natural substrate, that is, in its natural context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号