首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current research work describes the development of a rapid HPLC method for the concurrent detection of pregabalin and piperine in dual drug-loaded nanoformulations. The primary goal was to recognize the chromatographic conditions wherein propitious segregation of the integrants with quality peaks can be attained. An attempt to expound the target analytical profile was made to accomplish this goal, and critical method attributes (CMAs), viz. percentage acetonitrile content, injection volume and pH, which affect critical quality attributes (CQAs), were identified using systemic risk analysis. Box–Behnken design was employed to develop a relationship between CMAs and CQAs, which engenders an analytical design space. Efficient chromatographic separation for pregabalin and piperine was attained using an analytical C18 column and mobile phase comprising acetonitrile–water (pH 6.9; 70:30%, v/v) in an isocratic elution mode with a 1 ml/min flow rate. The elution was descried at an isosbestic wavelength of 221 nm using a photodiode array detector. The International Conference on Harmonization guidelines were adopted for the developed HPLC method. The validated HPLC method can be further utilized for the simultaneous quantification and detection of pregabalin and piperine in other lipid-based nanopharmaceuticals such as polymeric nanoparticles, nanocrystals, solid-lipid nanoparticles, metallic nanoparticles, etc., in in vitro and in vivo studies.  相似文献   

2.
The current research work envisages an analytical quality by design‐enabled development of a simple, rapid, sensitive, specific, robust and cost‐effective stability‐indicating reversed‐phase high‐performance liquid chromatographic method for determining stress‐induced forced‐degradation products of sorafenib tosylate (SFN). An Ishikawa fishbone diagram was constructed to embark upon analytical target profile and critical analytical attributes, i.e. peak area, theoretical plates, retention time and peak tailing. Factor screening using Taguchi orthogonal arrays and quality risk assessment studies carried out using failure mode effect analysis aided the selection of critical method parameters, i.e. mobile phase ratio and flow rate potentially affecting the chosen critical analytical attributes. Systematic optimization using response surface methodology of the chosen critical method parameters was carried out employing a two‐factor–three‐level–13‐run, face‐centered cubic design. A method operable design region was earmarked providing optimum method performance using numerical and graphical optimization. The optimum method employed a mobile phase composition consisting of acetonitrile and water (containing orthophosphoric acid, pH 4.1) at 65:35 v/v at a flow rate of 0.8 mL/min with UV detection at 265 nm using a C18 column. Response surface methodology validation studies confirmed good efficiency and sensitivity of the developed method for analysis of SFN in mobile phase as well as in human plasma matrix. The forced degradation studies were conducted under different recommended stress conditions as per ICH Q1A (R2). Mass spectroscopy studies showed that SFN degrades in strongly acidic, alkaline and oxidative hydrolytic conditions at elevated temperature, while the drug was per se found to be photostable. Oxidative hydrolysis using 30% H2O2 showed maximum degradation with products at retention times of 3.35, 3.65, 4.20 and 5.67 min. The absence of any significant change in the retention time of SFN and degradation products, formed under different stress conditions, ratified selectivity and specificity of the systematically developed method.  相似文献   

3.
The present studies describe the systematic quality by design (QbD)‐oriented development and validation of a simple, rapid, sensitive and cost‐effective reversed‐phase HPLC bioanalytical method for nevirapine in rat plasma. Chromatographic separation was carried out on a C18 column using isocratic 68:9:23% v/v elution of methanol, acetonitrile and water (pH 3, adjusted by orthophosphoric acid) at a flow rate of 1.0 mL/min using UV detection at 230 nm. A Box–Behnken design was applied for chromatographic method optimization taking mobile phase ratio, pH and flow rate as the critical method parameters (CMPs) from screening studies. Peak area, retention time, theoretical plates and peak tailing were measured as the critical analytical attributes (CAAs). Further, the bioanalytical liquid–liquid extraction process was optimized using an optimal design by selecting extraction time, centrifugation speed and temperature as the CMPs for percentage recovery of nevirapine as the CAA. The search for an optimum chromatographic solution was conducted through numerical desirability function. Validation studies performed as per the US Food and Drug Administration requirements revealed results within the acceptance limit. In a nutshell, the studies successfully demonstrate the utility of analytical QbD approach for the rational development of a bioanalytical method with enhanced chromatographic separation and recovery of nevirapine in rat plasma. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A Monte Carlo method was used to develop the design space of a chromatographic elution process for the purification of saponins in Panax notoginseng extract. During this process, saponin recovery ratios, saponin purity, and elution productivity are determined as process critical quality attributes, and ethanol concentration, elution rate, and elution volume are identified as critical process parameters. Quadratic equations between process critical quality attributes and critical process parameters were established using response surface methodology. Then probability‐based design space was computed by calculating the prediction errors using Monte Carlo simulations. The influences of calculation parameters on computation results were investigated. The optimized calculation condition was as follows: calculation step length of 0.02, simulation times of 10 000, and a significance level value of 0.15 for adding or removing terms in a stepwise regression. Recommended normal operation region is located in ethanol concentration of 65.0–70.0%, elution rate of 1.7–2.0 bed volumes (BV)/h and elution volume of 3.0–3.6 BV. Verification experiments were carried out and the experimental values were in a good agreement with the predicted values. The application of present method is promising to develop a probability‐based design space for other botanical drug manufacturing process.  相似文献   

5.
A green and robust reverse-phase liquid chromatographic method has been developed for the determination of fenoverine (FEN), by applying combined principles of green analytical chemistry and quality by design approaches on a Spherisorb C18 column (150?×?4.6?mm, 3?µm) with UV detection at 262?nm. A two level fractional factorial design (2^7-3) Res IV was used for screening of influential chromatographic factors. The critical method parameters actively affecting critical quality attributes (CQAs) were identified and further optimized using Box–Behnken design. The predicted optimum assay conditions comprised of methanol and ammonium acetate buffer 20?mM, in an extent of 81:19% v/v individually having a flow rate of 1.0?mL/min with a column oven temperature of 33°C. The drug was stressed in hydrolytic, oxidative, reductive, thermal, and photolytic conditions. The developed method was validated successfully. The detector response was linear in the concentration of 0.5–160?µg/mL with a limit of detection (LOD) and limit of quantitation (LOQ) as 0.1 and 0.3?µg/mL, respectively. The % recovery was found to be 99.7%. The analytical method volume intensity value for developed method was 45?mL and the environment assessment tool (EAT) score was 41.07. The method is simple, environmentally benign, rapid, and robust for the determination of FEN in bulk and in its dosage form.  相似文献   

6.
The design of an appropriate analytical method for assessing the quality of pharmaceuticals requires a deep understanding of science, and risk evaluation approaches are appreciated. The current study discusses how a related substance method was developed for Nintedanib esylate. The best possible separation between the critical peak pairs was achieved using an X-Select charged surface hybrid Phenyl Hexyl (150 × 4.6) mm, 3.5 μm column. A mixture of water, acetonitrile, and methanol in mobile phase-A (70:20:10) and mobile phase-B (20:70:10), with 0.1% trifluoroacetic acid and 0.05% formic acid in both eluents. The set flow rate, wavelength, and injection volumes were 1.0 ml/min, 285 nm, and 5 μl, respectively, with gradient elution. The method conditions were validated as per regulatory requirements and United States Pharmacopeia general chapter < 1225 >. The correlation coefficient for all impurities from the linearity experiment was found to be > 0.999. The % relative standard deviation from the precision experiments ranged from 0.4 to 3.6. The mean %recovery from the accuracy study ranged from 92.5 to 106.5. Demonstrated the power of the stability-indicating method through degradation studies; the active drug component is more vulnerable to oxidation than other conditions. Final method conditions were further evaluated using a full-factorial design. The robust method conditions were identified using the graphical optimization from the design space.  相似文献   

7.
A reversed-phase ultrafast liquid chromatography method was developed for quantification of lansoprazole in pharmaceutical dosage form using analytical quality by design approach. Systematic planning and experimentation using design of experiment approach were used for method development and optimization studies. A central composite design was used for optimizing the chromatography, by choosing organic phase proportion and flow rate as the critical method variables for evaluating their effect on critical analytical attributes like resolution, plate number, and tailing factor. The optimal chromatography was accomplished on a C-18 column (250?×?4.6?mm, 5?µm) using methanol:water (70:30, v/v) as mobile phase at a flow rate of 1.0?mL/min. Photo diode array (PDA) detection was performed at 284?nm. Caffeine was used as the internal standard. Method validation studies revealed that the calibration curve was linear over 1.0–300?µg/mL. The method was found accurate with average recovery between 98.99 and 102.87%. The percent relative standard deviation values obtained for precision were as per ICH guideline and within the acceptance limits (<2%). Results of system suitability indicated superior method robustness. In a nutshell, the method was found to be highly suitable for its applicability in the determination of lansoprazole in bulk and tablet dosage form.  相似文献   

8.
The current work entails development of rapid, sensitive, and inexpensive high-performance liquid chromatographic method of quercetin dihydrate using the quality by design approach. Quality target method profile was defined and critical analytical attributes (CAAs) were earmarked. Chromatographic separation was accomplished on a C18 column using acetonitrile and ammonium acetate buffer (35:65) %v/v (containing 0.1% acetic acid, pH 3.5) as mobile phase at 0.7?mL/min flow rate with UV detector at 237?nm. Screening studies using fractional factorial design revealed that organic modifier, injection volume, column temperature, and buffer strength have significant influence on method CAAs, namely, peak area, retention time, and peak tailing. The critical method parameters were systematically optimized using Box–Behnken design. Response surface mapping was used along with numerical optimization and desirability function for identifying the optimal chromatographic conditions. Linearity was observed in the drug concentration ranging between 2 and 50?µg/mL. Accuracy analysis revealed mean % recovery between 93.6 and 96.2%, while precision study revealed mean % recovery between 93.7 and 96.5%. Limits of detection and quantification of the developed method were found to be 12.1 and 36.6?ng/mL. Overall, the studies construed successful development of chromatographic method of quercetin with enhanced method performance.  相似文献   

9.
A rapid and sensitive ultra high performance liquid chromatography method with diode array detection was developed for the fingerprint analysis and simultaneous determination of seven active compounds in Xiaoyanlidan (XYLD) tablets. The chromatographic separations were obtained on an Agilent Eclipse plus C18 column (50 × 2.1 mm id, 1.8 μm) using gradient elution with water/formic acid (1%) and acetonitrile at a flow rate of 0.4 mL/min. Within 63 min, 36 peaks could be selected as the common peaks for fingerprint analysis to evaluate the similarities among several samples of XYLD tablets collected from different manufacturers. In quantitative analysis, seven compounds showed good regression (R > 0.9990) within test ranges and the recovery of the method was within the range of 95.9–104.3%. The method was successfully applied to the simultaneous determination of seven compounds in six batches of XYLD tablets. These results demonstrate that the combination of chromatographic fingerprint analysis and simultaneous multi‐ingredient quantification using the ultra high performance liquid chromatography method with diode array detection offers a rapid, efficient, and reliable approach for quality evaluation of XYLD tablets.  相似文献   

10.
A fingerprint method was developed and combined with chemometrics for quality evaluation of Tianma Toutong tablets, which are herbal medicine tablets used to treat migraine. Samples were analyzed by high‐performance liquid chromatography, where five single‐wavelength profiles (203, 232, 254, 280 and 310 nm) were fused to generate a five‐wavelength fusion fingerprint and were also used for the quantitative analysis of seven chemical markers (gastrodin, caffeic acid, hesperidin, isoimperatorin, chlorogenic acid, ferulic acid and imperatorin). A systematic quantitative fingerprint method and principal component analysis were used to analyze the generated data. Samples could be well distinguished from different manufacturers by analyzing the chromatographic data sets. In addition, the partial least squares model can serve as an antioxidant activity evaluation of Tianma Toutong tablets, as well as a reference for the selection of active constituents to analyze the spectrum–activity relationship. In summary, the integrated use of the fingerprint and chemometric analysis provides a reliable method for the identification of markers and the quality control of Tianma Toutong tablets.  相似文献   

11.
The chemical constituents from Phellodendron amurense Rupr. were characterized systematically by ultra-performance liquid chromatography—quadrupole–time-of-flight–mass spectrometry method for collecting mass spectrometry data, and the fingerprints method was established, providing reference for its quality control. The chromatographic column was ACQUITY UPLC BEH-C18 (100 mm×2.1 mm, 1.7 μm). The mobile phase was acetonitrile-0.1% formic acid aqueous solution and the compounds from P. amurense Rupr. were identified by Qualitative Analysis 10.0 software, reference substance, retention time, mass spectrometry fragmentation pattern and database retrieval. Meanwhile, liquid chromatography–mass spectrometry fingerprint methods of P. amurense Rupr. and Phellodendron chinense Schneid. were established by using the similarity evaluation system of chromatographic fingerprint of traditional Chinese medicine (2012 edition), and the differences were analyzed by multivariate statistical analysis methods. A total of 105 compounds were identified, including 102 alkaloids, two phenolic acids, and one lactone compound. Liquid chromatography–mass spectrometry fingerprint method was established with ideal precision, stability and repeatability, and 12 quality differential markers were recognized between the above two herbs. Liquid chromatography–mass spectrometry method can be used for qualitative analysis of the constituents of Phellodendron amurense Rupr., providing reference for clarifying the material basis and promoting the clinical precision medication and quality evaluation of P. amurense Rupr.  相似文献   

12.
A reverse-phase liquid chromatography method with diode array detection was developed to evaluate the quality of Ginkgo biloba extract through establishing chromatographic fingerprint and simultaneous determination of eight flavonoid compounds, namely rutin, myricetin, quercitrin, quercetin, luteolin, kaempferol, apigenin, and isorhamnetin. The chromatographic separation was performed on an Agilent SB-C18 column (250 × 4.6 mm, 5.0 μm) with a gradient elution program using a mixture of methanol and 0.1% formic acid (v/v) as mobile phase within 55 min at 360-nm wavelength. The correlation coefficients of similarity for different batches of G. biloba extract from the same manufacturer and G. biloba extract from different manufacturers were determined from the LC fingerprints, and they shared a close similarity. The eight flavonoid compounds showed good regression (R 2 > 0.9995) within test ranges, and the recovery of the method was in the range of 94.1–101.4%. In addition, the content of those eight flavonoid compounds in G. biloba extract prepared by different manufacturers of China was determined to establish the effectiveness of the method. The results indicated that the developed method by having a combination of chromatographic fingerprint and quantification analysis could be readily utilized as a quality control method for G. biloba extract and its related traditional Chinese medicinal preparations.  相似文献   

13.
An innovative high‐performance liquid chromatography assay method was developed and validated for quantification of dextromethorphan hydrobromide and desloratadine simultaneously in monophasic liquid formulation by preparing syrup containing 30 mg/5 mL of dextromethorphan hydrobromide and 1.2 mg/mL of desloratadine. The chromatographic severance was executed by gradient solution A and B. The composition of buffer solution A contained 0.05 M monobasic potassium, then 1 mL triethylamine was added to it and the pH was adjusted to 2.3 with orthophosphoric acid. Methanol was used as solution B. The gradient elution was executed with Kromasil C8 (250 mm × 4.6 mm) column having 1.5 mL/min flow rate and 20 µL injection volume with UV‐estimation at 254 nm for dextromethorphan hydrobromide and DES. The present research was planned according to Box‐Behnken design by utilizing design expert software, using four factors such as column temperature (A), flow rate (B), mobile phase–organic phase (C), and pH (D); correspondingly the selected response variables were resolution between A and B, that is, desloratadine and methyl paraben (Y1), tailing of dextromethorphan hydrobromide (Y2), and tailing of desloratadine (Y3). The parameters such as system suitability, linearity, accuracy, precision, robustness, limit of detection, limit of quantitation, and ruggedness were analyzed to validate the developed method in accordance with current regulatory guidelines.  相似文献   

14.
In the present work, we investigated the development of a bioanalytical HPLC method of rosuvastatin (RSV) calcium as per the Quality by Design (QbD)-based systematic chemometric tools. At first, the method objectives were framed and critical analytical attributes (CAAs) were chosen. Risk assessment and factor screening was performed using Hybrid Risk Matrix and Plackett–Burman design for identifying vital factors influencing the critical method parameters (CMPs). Monte-Carlo simulation analysis was conducted which confirmed excellent process robustness (Ppk >1.33) for the studied ranges of CMPs. Furthermore, systematic method development was carried out using custom experimental design, where mobile phase ratio, pH, and injection volume were taken as CMPs at three levels. The obtained trials were evaluated for peak area, retention time, theoretical plates, and peak tailing as CAAs. Mathematical response surface modeling was carried out and optimal chromatographic solution was identified using response optimizer plots. Method transfer was made to bioanalytical scale for estimation of the analyte in rat plasma samples. Extensive method validation was performed as per the ICH Q2 guideline, which indicated validation parameters within the acceptable limits. Overall, the studies construed successful development of QbD compliant HPLC method of rosuvastatin with potential utility bioanalytical testing.  相似文献   

15.
In this study, a low-cost efficient online derivatization system was developed which allows for the detection of various types of mono- and oligo-saccharides only utilizing high-performance liquid chromatography (HPLC)-ultraviolet detector (UV) system. In the proposed method, phenylhydrazine was used as the derivatization reagent and directly spiked in the mobile phase, allowing for the separation and detection of mono- and oligosaccharides in an accessible instrument system (HPLC-UV). And the online derivatization design of the proposed method has significantly reduced the potential harm of derivatization reagents to the analysts. Furthermore, critical chromatographic parameters were optimized via the Box-Behnken design strategy, culminating in the ideal response for saccharides. Finally, the methodology validation of the proposed method was conducted. The proposed method showed satisfactory linear ranges with acceptable correlation coefficients (R2 > 0.99), outstanding accuracy (Recovery: 95.3%–105.6%), high intra-day precision (relative standard deviation [RSD]: 1.4%–7.1%) and inter-day precision (RSD: 2.0%–7.4%). The robustness and ruggedness of the proposed method were proved as the recovery values in the range of 95.0%–104.6% and 95.1%–104.8% for robustness and ruggedness, respectively. These satisfactory validation results confirm the applicability and reliability of the proposed method for the analysis of saccharides in various complex real-world samples.  相似文献   

16.
Theophylline, tolbutamide, mephenytoin, debrisoquin, and dapsone are marker substrates for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, respectively. A silica‐based monolithic column (Chromolith SpeedROD RP‐18e, 50×4.6 mm) was used to separate these five marker substrates of cytochrome P450 within only 84 s. Linear gradient elution was from acetonitrile‐water‐formic acid (10 : 90 : 1, v/v/v) to acetonitrile‐water‐formic acid (90 : 10 : 1, v/v/v) in 1.4 min. The flow rate was 2.5 mL/min. The retention time was 0.52 min for theophylline, 0.67 min for debrisoquin, 0.78 min for dapsone, 0.96 min for mephenytoin, and 1.13 min for tolbutamide. Detection was by tandem mass spectrometry using a PE Sciex API 3000 mass spectrometer with a Turbo‐Ionspray source in positive mode. A simple protein precipitation method was used. This method was validated over the concentration range of 5–2000 ng/mL based on the sample volume of 0.1 mL.  相似文献   

17.
A high‐performance liquid chromatography coupled with photodiode array detection and electrospray ionization tandem mass spectrometry (HPLC‐PAD‐ESI‐MSn) method was developed to evaluate the quality of Hpericum japomicum through establishing chromatographic fingerprint and simultaneous determination of seven phenolic compounds. The analysis was achieved on an Ultimate XB‐C18 analytical column (250 mm × 4.6 mm i.d., 5 µm) using an aqueous solution of acetic acid (pH 3.8) and methanol as the mobile phase. Ten samples of H. japomicum from various habitats were investigated and the correlation coefficients of similarity were determined from the HPLC fingerprints. By using an online ESI‐MSn, 20 common peaks in chromatographic fingerprints were identified as phenols, including flavones and their glycosides, flavonones and their glucosides, flavanols, xanthones, phloroglucinols, phenyl propanoids and chromones. Based on the above study, seven phenols which are considered to be major constituents in H. japomicum, including 3,4‐dihydroxybenzoic acid (1), taxfolin‐7‐O‐α‐l ‐rhamnoside (7), 7‐dihydroxy‐2‐(1‐methylpropyl)chromone‐8‐β‐d ‐glucoside (8), isoquercitrin (14), quercitrin (16), quercetin‐7‐O‐α‐l‐ rhamnoside (18) and quercetin (19) were quantified by the validated HPLC‐PAD method. This developed method by combination of chromatographic fingerprint and quantification analysis could be applied to control the quality of H. japomicum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, the capillary electrophoresis-photodiode array detector was employed for the analysis of four iridoid compounds in Gentiana macrophylla Radix (RGM), and the method was optimized based on the concept of analytical quality by design (AQbD). The peak areas relative standard deviation (n = 3) and resolution of the four analytes were selected as critical method attributes. Fractional factorial design test combined with Pareto analysis were employed to screen critical method parameters (buffer concentration, pH, sodium dodecyl sulfate [SDS] micelle concentration, temperature, and voltage). Subsequently, three main factors (buffer concentration, buffer pH, and SDS concentration) were selected by central composite design test for constructing the design space. The optimal separation conditions as follows: capillary column (50.2 cm × 50 µm, detection length 40 cm). Working background electrolyte consisted of 51 mmol/L borax solution (pH = 9.47) and 40 mmol/L SDS. The samples were injected by pressure (5 s at 0.5 psi) and the detection was performed at 254 nm. Applied voltage was 20 kV and column temperature was 23°C. The developed method is rapid and reliable for the quantitative analysis of four iridoid compounds in RGM, providing a reference for the application of AQbD concept in the analysis of natural products.  相似文献   

19.
An efficient method using ultra‐performance LC coupled with triple quadrupole MS was developed for the rapid determination of 12 major active components in Pien Tze Huang (PZH), a well‐known traditional Chinese formula. Chromatographic separation was achieved on a Waters XBridge BEH RP18 column (50 mm × 2.1 mm id, 1.7 μm) with a gradient mobile phase (A: 0.1% aqueous formic acid and B: acetonitrile with 0.1% formic acid) at a flow rate of 0.8 mL/min. The chromatographic peaks of 12 components were identified by comparing their retention time and MS data with the related reference compounds. Multiple‐reaction monitoring was employed for the quantitative analysis. Ten batches of PZH were analyzed with a good linear regression relationship (r, 0.9987–0.9995), intraday precisions (RSD, 2.05–4.80%), interday precisions (RSD, 1.99–4.98%), repeatability (RSD, 2.21–4.20%), stability (RSD, 3.52–4.81%), and recovery (95.63–104.80%). By using this established method, the present study offered highly sensitive, specific, and speedy determination of 12 major components, which promoted the quality control investigation of PZH greatly.  相似文献   

20.
A sensitive and specific liquid chromatographic–electrospray ionization mass spectrometric method was developed for quantification of salvianolic acid B in rat plasma with resveratrol as the internal standard. The analytes were separated on a reversed‐phase column with acetonitrile (40%) and water (60%) containing 0.75% formic acid as mobile phase at a flow rate of 1 mL/min. Liquid–liquid extraction was adopted for the sample preparation, and the analytes were determined using electrospray negative ionization mass spectrometry in the selective monitoring mode. The method was validated over the concentration range 0.1–40 µg/mL using 0.1 mL of plasma with coefficients of correlation >0.999. The intra‐ and inter‐day precisions of analysis were <10%, and accuracy ranged from 94 to 101%. This method was successfully applied to a pharmacokinetics of salvianolic acid B in rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号