首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 583 毫秒
1.
Crystallization of organic molecules is quite complicated because the crystallization process is governed by weak intermolecular interactions. By exploiting aggregation‐induced emission (AIE), we attempted to realize the selective detection of phase transformation during the evaporative crystallization of hexaphenylsilole (HPS), which shows different fluorescent colors in the amorphous and crystalline phases. No fluorescence emission was observed in the HPS solution immediately after dropping on the glass substrate due to the non‐radiative deactivation induced by intramolecular rotational or vibrational motion, suggesting that HPS exists as a monomer in solution. As time elapsed after dropping, green emission first appeared, which changed to blue after solvent evaporation, because of phase transformation from the amorphous state to the crystalline state. This phenomenon supports not only the two‐step nucleation model involving an intermediate such as a liquid‐like cluster prior to nucleation but also the real‐time detection of Ostwald's rule of stages during evaporative crystallization.  相似文献   

2.
Two diketopyrrolopyrrole derivatives ( DPP1 and DPP2 ) are used for generating multiple luminescent colors (yellow–orange–red–deep red) in solution, nanoparticle, aggregate and solid states through an aggregation‐induced emission (AIE) coupled excited‐state intramolecular proton transfer (ESIPT) process. They are potentially useful for bioimaging due to their good biocompatibility and large Stoke shifts.  相似文献   

3.
Aggregation‐induced emission luminogens (AIEgens) are a new class of luminophors, which are non‐emissive in solution, but emit intensively upon aggregation. By properly designing the chemical structures of the AIEgens, their aggregation process can be tuned towards a desired direction to give diverse novel luminescent architectures of micelles, rods, and helical fibers. AIEgens represent a kind of promising building block for the fabrication of luminescent micro/nanostructures with controllable morphologies. In this review, we describe our recent work in this research area, focusing on the molecular design, circularly polarized luminescence properties, and helical self‐assembly behavior of AIEgens.  相似文献   

4.
Developing luminescent probes with long lifetime and high emission efficiency is essential for time‐resolved imaging. However, the practical applications usually suffer from emission quenching of traditional luminogens in aggregated states, or from weak emission of aggregation‐induced emission type luminogens in monomeric states. Herein, we overcome this dilemma by a rigid‐and‐flexible alternation design in donor–acceptor–donor skeletons, to achieve a thermally activated delayed fluorescence luminogen with high emission efficiency both in the monomeric state (quantum yield up to 35.3 %) and in the aggregated state (quantum yield up to 30.8 %). Such a dual‐phase strong and long‐lived emission allows a time‐resolved luminescence imaging, with an efficiency independent of probe pretreatment and probe concentration. The findings open opportunities for developing luminescent probes with a usage in larger temporal and spatial scales.  相似文献   

5.
Herein we report the use of a hue parameter of HSV (Hue, Saturation and Value) color space—in combination with chromaticity color coordinates—for exploring the complexation‐induced luminescence color changes, ranging from blue to green to yellow to white, from a non‐luminescent Fe‐doped ZnS quantum dot (QD). Importantly, the surface complexation reaction helped a presynthesized non‐luminescent Fe‐doped ZnS QD to glow with different luminescence colors (such as blue, cyan, green, greenish‐yellow, yellow) by virtue of the formation of various luminescent inorganic complexes (using different external organic ligands), while the simultaneous blue‐ and yellow‐emitting complex formation on the surface of non‐luminescent Fe‐doped ZnS QD led to the generation of white light emission, with a hue mean value of 85 and a chromaticity of (0.28,0.33). Furthermore, the surface complexation‐assisted incorporation of luminescence properties to a non‐luminescent QD not only overcomes their restricted luminescence‐based applications such as light‐emitting, biological and sensing applications but also bring newer avenues towards unravelling the surface chemistry between QDs and inorganic complexes and the advantage of having an inorganic complex with QD for their aforementioned useful applications.  相似文献   

6.
Studies are reported on a series of triphenylamine–(C?C)n–2,5‐diphenyl‐1,3,4‐oxadiazole dyad molecules (n=1–4, 1 , 2 , 3 and 4 , respectively) and the related triphenylamine‐C6H4–(C?C)3–oxadiazole dyad 5 . The oligoyne‐linked D–π–A (D=electron donor, A=electron acceptor) dyad systems have been synthesised by palladium‐catalysed cross‐coupling of terminal alkynyl and butadiynyl synthons with the corresponding bromoalkynyl moieties. Cyclic voltammetric studies reveal a reduction in the HOMO–LUMO gap in the series of compounds 1 – 4 as the oligoyne chain length increases, which is consistent with extended conjugation through the elongated bridges. Photophysical studies provide new insights into conjugative effects in oligoyne molecular wires. In non‐polar solvents the emission from these dyad systems has two different origins: a locally excited (LE) state, which is responsible for a π*→π fluorescence, and an intramolecular charge transfer (ICT) state, which produces charge‐transfer emission. In polar solvents the LE state emission vanishes and only ICT emission is observed. This emission displays strong solvatochromism and analysis according to the Lippert–Mataga–Oshika formalism shows significant ICT for all the luminescent compounds with high efficiency even for the longer more conjugated systems. The excited‐state properties of the dyads in non‐polar solvents vary with the extent of conjugation. For more conjugated systems a fast non‐radiative route dominates the excited‐state decay and follows the Engelman–Jortner energy gap law. The data suggest that the non‐radiative decay is driven by the weak coupling limit.  相似文献   

7.
A series of dinuclear diphosphine complexes of gold(I) alkynyls containing bis(diphenylphosphanyl)ethane/propane and alkynyl ligands with aromatic substituents (biphenyl, pyrene, and azobenzene) was synthesized and characterized using X‐ray crystallography and NMR spectroscopy. Photophysical parameters of the compounds obtained strongly depend on the nature of aromatic substituents in the alkynyl ligands. Azobenzene containing derivatives are non‐luminescent, whereas biphenyl and pyrene containing complexes display moderate emission both in solution and in solid state. The complexes with biphenyl substituents display strong heavy atom effect and show typical phosphorescent emission. In contrast, the complexes containing pyrene chromophore are fluorescent that points to the absence of spin orbit coupling in these systems, which additionally display static excimer emission in solid phase due to ground state π‐stacking of the pyrene moieties.  相似文献   

8.
A butterfly‐like phosphorescent platinum(II) binuclear complex can undergo a molecular structure change in which the Pt–Pt distance shortens upon photoexcitation, which leads to the formation of two distinct excited states and dual emission in the steady state, that is, greenish‐blue emission from the high‐energy excited state at the long Pt–Pt distance and red emission from the low‐energy excited state at the short Pt–Pt distance. This photoinduced molecular structure change has a strong dependence on the molecule’s surrounding environment, allowing its application as self‐referenced luminescent sensor for solid–liquid phase change, viscosity, and temperature, with greenish‐blue emission in solid matrix and rising red emission in molten liquid phase. With proper control of the surrounding media to manipulate the structural change and photophysical properties, a broad white emission can be achieved from this molecular butterfly.  相似文献   

9.
The synthesis of five novel distyrylbenzene (DSB) derivatives, featuring a central tetraphenylbenzene core, is reported. The targets show aggregation‐induced emission (AIE), which, however, is substituent‐dependent. For the pure hydrocarbon and derivatives that do not carry (+M) or (?M) substituents, classic AIE behavior is observed, that is, the DSBs are non‐fluorescent in solution, but are highly fluorescent in cold matrices, upon aggregate formation in poor solvents and in the solid, crystalline state. If aldehyde or dibutylamino groups are attached in the para‐position of the DSB unit, non‐classic AIE‐phores result. These are fluorescent both in dilute solution as well as in the solid state. Prolonged irradiation of the targets leads to benzotetraphene derivatives by a double cyclization.  相似文献   

10.
The efficient utilization of energy dissipating from non‐radiative excited‐state decay of fluorophores was only rarely reported. Herein, we demonstrate how to boost the energy generation of non‐radiative decay and use it for cancer theranostics. A novel compound (TFM) was synthesized which possesses a rotor‐like twisted structure, strong absorption in the far red/near‐infrared region, and it shows aggregation‐induced emission (AIE). Molecular dynamics simulations reveal that the TFM aggregate is in an amorphous form consisting of disordered molecules in a loose packing state, which allows efficient intramolecular motions, and consequently elevates energy dissipation from the pathway of thermal deactivation. These intrinsic features enable TFM nanoparticles (NPs) to display a high photothermal conversion efficiency (51.2 %), an excellent photoacoustic (PA) effect, and effective reactive oxygen species (ROS) generation. In vivo evaluation shows that the TFM NPs are excellent candidates for PA imaging‐guided phototherapy.  相似文献   

11.
Non‐doped organic light‐emitting diodes (OLEDs) possess merits of higher stability and easier fabrication than doped devices. However, luminescent materials with high exciton use are generally unsuitable for non‐doped OLEDs because of severe emission quenching and exciton annihilation in neat films. Herein, we wish to report a novel molecular design of integrating aggregation‐induced delayed fluorescence (AIDF) moiety within host materials to explore efficient luminogens for non‐doped OLEDs. By grafting 4‐(phenoxazin‐10‐yl)benzoyl to common host materials, we develop a series of new luminescent materials with prominent AIDF property. Their neat films fluoresce strongly and can fully harvest both singlet and triplet excitons with suppressed exciton annihilation. Non‐doped OLEDs of these AIDF luminogens exhibit excellent luminance (ca. 100000 cd m?2), outstanding external quantum efficiencies (21.4–22.6 %), negligible efficiency roll‐off and improved operational stability. To the best of our knowledge, these are the most efficient non‐doped OLEDs reported so far. This convenient and versatile molecular design is of high significance for the advance of non‐doped OLEDs.  相似文献   

12.
A series of luminescent cyclometalated platinum(Ⅱ)complexes,(C^N^N)Pt(C≡CR)[HC^N^N=4-(4-tolyl)-6-phenyl-2,2’-bipyridine;R=4-chlorophenyl(1),phenyl(2) and 4-tolyl(3)],were synthesized,and their spectroscopic properties have been examined.These complexes are brightly emissive both in fluid solution and in the solid state,attributed to triplet metal-to-ligand charge transfer(^3MLCT)state.The excited state energy can be tuned by ancillary acetylide ligands.The emission lifetimes in dichloromethand solution at room temperature were up to 1.64 μs and the emission quantum yields were in the range of 0.03-0.15.  相似文献   

13.
A water‐stable luminescent terbium‐based metal–organic framework (MOF), {[Tb(L1)1.5(H2O)] ? 3 H2O}n (Tb‐MOF), with rod‐shaped secondary building units (SBUs) and honeycomb‐type tubular channels has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. The high green emission intensity and the microporous nature of the Tb‐MOF indicate that it can potentially be used as a luminescent sensor. In this work, we show that Tb‐MOF can selectively sense Fe3+ and Al3+ ions from mixed metal ions in water through different detection mechanisms. In addition, it also exhibits high sensitivity for 2,4,6‐trinitrophenol (TNP) in the presence of other nitro aromatic compounds in aqueous solution by luminescence quenching experiments.  相似文献   

14.
A series of thirteen luminescent tetrahedral borate complexes based on the 2‐(2′‐hydroxyphenyl)benzoxazole (HBO) core is presented. Their synthesis includes the incorporation of an ethynyl fragment by Sonogashira cross‐coupling reaction, with the goal of extending the conjugation and consequently redshifting their emission wavelength. Different regioisomers, substituted in the 3‐, 4‐, or 5‐position of the phenolate side of the HBO core, were studied in order to compare their photophysical properties. The complexes were characterized by X‐ray diffraction and NMR, UV/Vis, and emission spectroscopy in solution and in the solid state. In all cases, complexation to boron leads to a donor–acceptor character that impacts their photophysical properties. Complexes with a 3‐ or 5‐substituted fragment display mild to pronounced internal charge transfer (ICT), a feature strengthened by the presence of p‐dibutylaminophenylacetylene in the molecular structure, protonation of the nitrogen atom of which leads to a significant blueshift and an increase in quantum yield. On the contrary, when the ethynyl module is grafted on the 4‐position, narrow, structured, symmetrical absorption/emission bands are observed. Moreover, the fact that protonation has little effect on the emission maximum wavelength reveals singlet excited‐state decay. Solid‐state emission properties reveal a redshift compared to solution, explained by tight packing of the π‐conjugated systems and the high planarity of the dyes. Subsequent connection of these complexes to other photoactive subunits (BODIPY, Boranil) provides dyads in which efficient cascade energy transfer is observed.  相似文献   

15.
We present a nitrogen‐containing polycyclic aromatic hydrocarbon (N‐PAH), namely 12‐methoxy‐9‐(4‐methoxyphenyl)‐5,8‐diphenyl‐4‐(pyridin‐4‐yl)pyreno[1,10,9‐h,i,j]isoquinoline (c‐TPE‐ON), which exhibits high quantum‐yield emission both in solution (blue) and in the solid state (yellow). This molecule was unexpectedly obtained by a three‐fold, highly regioselective photocyclodehydrogenation of a tetraphenylethylene‐derived AIEgen. Based on manifold approaches involving UV/Vis, photoluminescence, and NMR spectroscopy as well as HRMS, we propose a reasonable mechanism for the formation of the disk‐like N‐PAH that is supported by density functional theory calculations. In contrast to most PAHs that are commonly used, our system does not suffer from entire fluorescence quenching in the solid state due to the peripheral aromatic rings preventing π–π stacking interactions, as evidenced by single‐crystal X‐ray analysis. Moreover, its rod‐like microcrystals exhibit excellent optical waveguide properties. Hence, c‐TPE‐ON comprises a N‐PAH with unprecedented luminescent properties and as such is a promising candidate for fabricating organic optoelectronic devices. Our design and synthetic strategy might lead to a more general approach to the preparation of solution‐ and solid‐state luminescent PAHs.  相似文献   

16.
To broaden the application of aggregation‐induced emission (AIE) luminogens (AIEgens), the design of novel small‐molecular dyes that exhibit high fluorescence quantum yield (Φfl) in the solid state is required. Considering that the mechanism of AIE can be rationalized based on steric avoidance of non‐radiative decay pathways, a series of bridged stilbenes was designed, and their non‐radiative decay pathways were investigated theoretically. Bridged stilbenes with short alkyl chains exhibited a strong fluorescence emission in solution and in the solid state, while bridged stilbenes with long alkyl chains exhibited AIE. Based on this theoretical prediction, we developed the bridged stilbenes BPST[7] and DPB[7], which demonstrate excellent AIE behavior.  相似文献   

17.
Solid state luminescent materials are the subject of ever growing interest both from a scientific and a technological point of view. Aggregation caused quenching (ACQ) processes however represent an obstacle to the development of most luminogens in the condensed phase. This is why particularly fascinating are those materials showing higher emission intensity in the solid state than in solution. Here we report on three 4-dialkylamino-2-benzylidene malonic acid dialkyl esters, very simple push-pull molecules, which are hardly emissive in solution and in the amorphous phase but become good emitters in the crystalline phase according to what has been indicated as crystallization induced emission (CIE). Thanks to combined emission and NMR spectroscopies at different temperatures on the prototype compound 4-dimethylamino-2-benzylidene malonic acid dimethyl ester in solution, we give full evidence that a restricted intramolecular rotation (RIR) phenomenon, in particular the hindered rotation around the aryl main axis of the compound, is at the origin of this behaviour. In addition, solid state photophysical and X-ray diffraction structural characterization allow us to identify J-dimeric interactions as responsible for the particularly intense emission of two of the three compounds. Moreover, by exploiting the compounds' acidochromic properties, applications in sensors and optoelectronics are envisaged.  相似文献   

18.
Herein, we present three imidazo[1,2‐a]pyridin‐2(3 H)‐one derivatives that are diamagnetic in solution, but paramagnetic in the solid state, possibly owing to a stacking‐induced formation of phenoxide‐type radicals. Notably, a larger bathochromic shift of the absorption (even up to the near‐ infrared region) of these three compounds was observed in the solid state than in solution, which was attributable to the ordered columnar stacking arrangements or their single‐electron character as radicals in the solid state. Interestingly, compared to that in solution, (E)‐3‐(pyridin‐4′‐ylmethylene)imidazo[1,2‐a]pyridine 2(3 H)‐one displayed a largely red‐shifted emission (centered at 660 nm, with tailing above 800 nm) in the solid state. A larger bathochromic shift (260 nm) of the emission is an indication of better order and tight stacking in the solid state, which is brought about by the rigid and polar acceptor. These three compounds also reveal different magnetic susceptibilities at 300 K, thus implying that they possess various columnar stacking structures. Most interestingly, these three radicals exhibit unusual ferromagnetic‐to‐antiferromagnetic phase transitions, which can be attributed to anisotropic contraction and non‐uniform slippage of the columnar stacking chains.  相似文献   

19.
Although carborane‐based luminescent materials have been studied for years, no persistent phosphor has been reported so far. Herein, we describe boron‐cluster‐based persistent phosphors obtained by linking a σ‐aromatic carboranyl cage to the π system of a carbazolyl group. The carboranes were found to promote intersystem crossing from a singlet to a triplet state. The rigid boron cluster was able to stabilize the ultralong triplet excitons through multiple nonclassical hydrogen bonds, such as B?H???π interactions, thus leading to a long lifetime of up to 0.666 s and an absolute phosphorescence quantum yield of 7.1 %, which is outstanding for an organic phosphor without heavy atoms. These phosphors can be excited by visible light and show dynamic emission behavior, including thermochromism and mechanochromism. This study demonstrates that non‐metal/heavy‐atom boron clusters can be used to develop multifunctional high‐performance phosphors for potential applications.  相似文献   

20.
Microlasers and waveguides have wide applications in the fields of photonics and optoelectronics. Lanthanide‐doped luminescent materials featuring large Stokes/anti‐Stokes shift, long excited‐state lifetime as well as sharp emission bandwidth are excellent optical components for photonic applications. In the past few years, great progress has been made in the design and fabrication of lanthanide‐based waveguides and lasers at the micrometer length scale. Waveguide structures and microcavities can be fabricated from lanthanide‐doped amorphous materials through top‐down process. Alternatively, lanthanide‐doped organic compounds featuring large absorption cross‐section can self‐assemble into low‐dimensional structures of well‐defined size and morphology. In recent years, lanthanide‐doped crystalline structures displaying highly tunable excitation and emission properties have emerged as promising waveguide and lasing materials, which substantially extends the range of lasing wavelength. In this minireview, we discuss recent advances in lanthanide‐based luminescent materials that are designed for waveguide and lasing applications. We also attempt to highlight challenging problems of these materials that obstacle further development of this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号