首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
静电纺丝是一种简单有效的制备聚合物纳米纤维的技术,在组织工程、药物控释和传感器等方面具有广泛的应用。采用静电纺丝技术制备得到的纳米纤维膜具有比表面积大、孔隙率高和易于分离回收等优点,可以作为一种优良的酶固定化载体,目前在酶固定化领域受到了广泛的关注。本文综述了近年来静电纺丝纳米纤维膜固定化酶的研究进展,在阐述静电纺丝纳米纤维膜制备技术的基础上,详细介绍了纳米纤维膜表面担载法和包埋法固定化酶的原理和方法,分析了不同固定化方法的优缺点,并讨论了静电纺丝纳米纤维膜固定化酶的应用前景,对静电纺丝纳米纤维膜固定化酶的发展方向进行了展望。  相似文献   

2.
静电纺丝技术是目前制备纳米纤维最重要的方法之一,以其制备的纤维具有直径可控、比表面积大、孔隙率高等优点,因而被广泛应用于过滤、催化、传感器及生物医学等众多领域.以静电纺丝纤维为模板可进一步构建多级结构的功能性聚合物纳米纤维复合材料,拓宽其应用范围.本文着重概述了近年来基于静电纺丝技术的简单共混型、核壳结构及多级结构的聚合物纳米纤维复合材料的制备、结构及性能,并展望了其应用研究前景.  相似文献   

3.
将生物材料通过静电纺丝制备成的纳米纤维,具有比表面积大、空隙率高、生物相容性好等优点,因此得到广泛研究。本文主要综述了近年来国内外静电纺丝制备丝素蛋白纳米纤维的研究现状,重点介绍了采用不同溶剂制备的纯丝素蛋白纳米纤维和丝素蛋白与其它材料复合制备的丝素蛋白复合纳米纤维,并展望丝素蛋白纳米纤维潜在的应用前景。  相似文献   

4.
静电纺丝是一种简单而高效制备高分子微纳米纤维的技术,由于设备和实验成本低、纤维产率高、制备出的纤维比表面积比较大、适用性广泛等独特的优势,近些年来备受关注。静电纺丝的应用是静电纺丝研究的最基本动力和终极目标,因此成为研究者一直努力的方向。为了研究静电纺丝应用的研究现状和主要发展方向,本文综述了静电纺丝纳米纤维薄膜几个主要的应用领域,包括组织工程、药物缓释、纳米传感器、能源应用、生物芯片和催化剂负载等,并展望了未来可能的发展方向。  相似文献   

5.
静电纺丝纳米纤维具有比表面积大、孔隙率高及密度低等优势,是电化学储能材料的理想候选者之一.本文综述了近年来静电纺丝碳纳米纤维、金属氧化物/硫化物/氮化物、导电聚合物及其复合材料在超级电容器领域的研究及应用进展,探讨了材料组成、结构与电化学电容性能之间的关系,并对静电纺丝纳米纤维基电极材料的发展前景进行了展望.这将为新型高性能超级电容器电极材料的结构设计与可控制备提供新思路.  相似文献   

6.
膜分离技术具有高效、节能、选择性好、操作简单等优点,是目前非常流行的水处理技术,有着巨大的应用前景.静电纺丝纳米纤维膜以其高孔隙率、孔径均匀、比表面积大、易于制备等独特性能已成为膜分离技术的重要发展方向.本文综述了一维纳米结构、核壳和中空结构以及多级结构静电纺丝纳米纤维材料的制备原理、结构和性能,着重介绍了以天然高分子...  相似文献   

7.
纳米抗菌材料是防止细菌等致病微生物对人们生产、生活的破坏而发展起来的一类新型材料.在纳米抗菌材料的众多制备方法中,静电纺丝是一种成本低,工艺可控的技术,制备的纳米纤维具有比表面积大、孔隙率高、纤维均匀等特点.本文作者首先简述了静电纺丝技术以及该技术制备纳米抗菌纤维材料的特点;接着按照菌剂种类不同,对静电纺丝技术制备的抗菌纤维材料进行归类,将其分为无机抗菌纤维材料、天然抗菌纤维材料和复合抗菌纤维材料3类,并对其研究进展进行了评述;最后对静电纺丝技术制备纳米抗菌纤维的研究现状进行了总结与展望.  相似文献   

8.
静电纺丝技术是制备连续微纳米纤维的一种简单易行且高效的方法,所制备的纳米纤维因其独特的结构尺寸和广泛的应用领域而备受材料科学界的青睐。 作为第三代超分子主体化合物的杯芳烃及其衍生物因其独特的分子结构、优异的离子选择识别性和吸附性能而显示出广阔的应用前景。 本文简述了静电纺丝制备杯芳烃功能化纳米纤维的原理,系统地探讨了其作为吸附剂和催化剂载体的应用以及静电纺丝与杯芳烃相结合的优势。 讨论了目前静电纺丝制备杯芳烃功能化纳米纤维存在的问题,对未来的发展方向进行展望。  相似文献   

9.
纳米纤维作为一维纳米材料的一个重要分支,有着广泛的应用前景。静电纺丝技术是一种制备一维纳米纤维的有效方法。然而,传统制备工艺制得的纳米纤维常为无序排列的结构,极大限制了其应用。近十几年来,通过对喷丝装置、纤维分化区及接收装置的改进获得了取向纳米纤维(aligned nanofibers, ANFs),引发了研究者的广泛关注,但对于取向纳米纤维的制备与应用未见系统性的论述。本文系统总结了采用静电纺丝技术制备取向纳米纤维的方法,并评述了这种取向结构在生物组织工程修复、传感器、增强材料及能源等领域中的应用。鉴于ANFs在生物组织工程中得到广泛的关注,本文对其进行了着重介绍。而在能源领域,本文主要阐述在质子交换膜燃料电池方面的应用。最后,本文总结了ANFs存在的问题,并展望了其未来的发展。  相似文献   

10.
锂离子动力电池,作为动力源,要求其具有较高的比容量、倍率性能、热稳定性及优异的循环性能。静电纺丝技术是一种新型纳米纤维制备技术,因其制备的纳米纤维膜具有比表面积大和孔隙率高等特点,近年来在锂离子电池领域得到了广泛应用,有望成为大幅改善锂离子动力电池性能的关键技术。基于锂离子动力电池的特性,当前静电纺丝技术主要用于制备高孔隙率的纳米纤维膜、高分子共混膜及无机-高分子复合膜等隔膜材料以提高隔膜的机械性能和热稳定性;此外,静电纺丝技术还被用于改善磷酸铁锂等聚阴离子型正极材料及石墨负极材料的电化学性能。本文还针对上述研究中存在的问题,提出了未来静电纺丝技术在锂离子动力电池中应用的可改进的研究方案。  相似文献   

11.
We report the fabrication of multiwalled carbon nanotube (MWCNT)-incorporated electrospun polyvinyl alcohol (PVA)/chitosan (CS) nanofibers with improved cellular response for potential tissue engineering applications. In this study, smooth and uniform PVA/CS and PVA/CS/MWCNTs nanofibers with water stability were formed by electrospinning, followed by crosslinking with glutaraldehyde vapor. The morphology, structure, and mechanical properties of the formed electrospun fibrous mats were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and mechanical testing, respectively. We showed that the incorporation of MWCNTs did not appreciably affect the morphology of the PVA/CS nanofibers; importantly the protein adsorption ability of the nanofibers was significantly improved. In vitro cell culture of mouse fibroblasts (L929) seeded onto the electrospun scaffolds showed that the incorporation of MWCNTs into the PVA/CS nanofibers significantly promoted cell proliferation. Results from this study hence suggest that MWCNT-incorporated PVA/CS nanofibrous scaffolds with small diameters (around 160 nm) and high porosity can mimic the natural extracellular matrix well, and potentially provide many possibilities for applications in the fields of tissue engineering and regenerative medicine.  相似文献   

12.
静电纺丝(电纺)技术是一种制备直径为数十纳米到数微米的纳米纤维的有效方法。由于生物高分子具有良好的生物相容性,近年来国内外对生物高分子的电纺制备进行了大量研究。这种生物高分子纳米纤维在组织工程支架、组织修复等方面有独特的优势。本文对生物高分子——多糖、蛋白质、核酸(DNA)的静电纺丝研究进行了总结。  相似文献   

13.
Resorbable polymer electrospun nanofiber-based materials/devices have high surface-to-volume ratio and often have a porous structure with excellent pore interconnectivity,which are suitable for growth and development of different types of cells.Due to the huge advantages of both resorbable polymers and electrospun nano fibers,re sorbable polymer electrospun nanofibers(RPENs)have been widely applied in the field of tissue engineering.In this paper,we will mainly introduce RPENs for tissue engineering.Firstly,the electrospinning technique and electrospun nanofiber architectures are briefly introduced.Secondly,the application of RPENs in the field of tissue engineering is mainly reviewed.Finally,the advantages and disadvantages of RPENs for tissue engineering are discussed.This review will provide a comprehensive guide to apply resorbable polymer electrospun nanofibers for tissue engineering.  相似文献   

14.
Electrospinning is a well-known technique since 1544 to fabricate nanofibers using different materials like polymers, metals oxides, proteins, and many more. In recent years, electrospinning has become the most popular technique for manufacturing nanofibers due to its ease of use and economic viability. Nanofibers have remarkable properties like high surface-to-volume ratio, variable pore size distribution (10–100 nm), high porosity, low density, and are suitable for surface functionalization. Therefore, electrospun nanofibers have been utilized for numerous applications in the pharmaceutical and biomedical field like tissue engineering, scaffolds, grafts, drug delivery, and so on. In this review article, we will be focusing on the versatility, current scenario, and future endeavors of electrospun nanofibers for various biomedical applications. This review discusses the properties of nanofibers, the background of the electrospinning technique, and its emergence in chronological order. It also covers the various types of electrospinning methods and their mechanism, further elaborating the factors affecting the properties of nanofibers, and applications in tissue engineering, drug delivery, nanofibers as biosensor, skin cancer treatment, and magnetic nanofibers.  相似文献   

15.
Electrospinning procedures such as blend electrospinning, coaxial electrospinning, and emulsion electrospinning have been used for the fabrication of electrospun nanofibers (ENFs) for biomedical applications. These ENFs are attracted great interest especially in drug delivery applications due to their small size, high surface area-to-volume, and porosity. The aim of this review is to focus on the controlled release mechanism among the different electrospinning methods, and the selectivity of hydrophilic, water-soluble polymers as a carrier for drug. The mechanism for the drug delivery depends mainly on the method of drug loading, polymeric interactions, and the nature of polymer swelling, erosion, or degradation. This review compressed on the literature survey about the fabrication of nanofibers by different electrospinning methods, factors affecting the nanofiber morphologies, selectivity of polymeric blends for successful controlled release behavior, and the mechanism involved in the drug release steps.  相似文献   

16.
电纺法制备聚合物纳米纤维的研究进展   总被引:3,自引:0,他引:3  
电纺技术是一种制备聚合物纳米纤维的新方法,它可制备出直径为纳米级的超细纤维,最小直径可至1nm.电纺法制备聚合物纳米纤维具有设备简单、操作容易以及高效等优点,它是目前能直接、连续制备聚合物纳米纤维的有效方法.本文介绍了电纺过程、原理及影响纤维性能的主要因素,综述了电纺技术在生物医学材料,复合增强纤维,无机纳米纤维,导电纳米纤维等方面的应用进展,最后对电纺技术在制备聚合物纳米纤维方面的发展前景作出了展望.  相似文献   

17.
The electrospinning process was used successfully to embed single-walled carbon nanotubes (SWCNTs) in a poly(ethylene oxide) (PEO) matrix, forming composite nanofibers. Initial dispersion of SWCNTs in water was achieved by the use of an amphiphilic alternating copolymer of styrene and sodium maleate. The resulting dispersions were stable, having a dark, smooth, ink-like appearance. For electrospinning, the dispersions were mixed with PEO solution in an ethanol/water mixture. The distribution and conformation of the nanotubes in the nanofibers were studied by transmission electron microscopy (TEM). Oxygen plasma etching was used to expose the nanotubes within the nanofibers to facilitate direct observation. Nanotube alignment within the nanofibers was shown to depend strongly on the quality of the initial dispersions. Well-dispersed and separated nanotubes were embedded in a straight and aligned form, while entangled nonseparated nanotubes were incorporated as dense aggregates. X-ray diffraction demonstrated a high degree of orientation of the PEO crystals in the electrospun nanofibers with embedded SWCNTs. This result is in pronounced distinction to the detrimental effect of incorporation of multiwalled carbon nanotubes on polymer orientation in electrospun nanofibers, as reported previously.  相似文献   

18.
Challenges associated with analyte and matrix complexities and the ever increasing pressure from all sectors of industry for alternative analytical devices, have necessitated the development and application of new materials in analytical chemistry. To date, nanomaterials have emerged as having excellent properties for analytical chemistry applications mainly due to their large surface area to volume ratio and the availability of a wide variety of chemical and morphological modification methods. Of the available nanofibrous material fabrication methods, electrospinning has emerged as the most versatile. It is the aim of this contribution to highlight some of the recent developments that harness the great potential shown by electrospun nanofibers for application in analytical chemistry. The review discusses the use of electrospun nanofibers as a platform for low resolution separation or as a chromatographic sorbent bed for high resolution separation. It concludes by discussing the applications of electrospun nanofibers in detection systems with a specific focus on the development of simple electrospun nanofiber based colorimetric probes.  相似文献   

19.
取向静电纺丝纳米纤维的制备及应用研究进展   总被引:1,自引:0,他引:1  
简单描述了静电纺丝的基本装置、原理;为制得高性能的取向纳米纤维,对静电纺丝中出现的不稳定性进行了研究,介绍了三种不稳定状况,并分析了其产生原因.列举了通过改变接收装置、控制电场和附加磁场等方法,改进静电纺丝技术来制取连续取向的纳米纤维,并对各种方法进行了简单的评价,指出磁化静电纺丝(MES)是目前制备取向纳米纤维最具有发展前景的方法.简要介绍了取向纳米纤维在生物组织工程领域方面的应用,并对其未来作了展望.  相似文献   

20.
A facile three-step method is developed to prepare new titania fibers with various special structures using a standard electrospinning equipment. After the traditional electrospinning, a treatment process, such as storing in air and soaking in water, for electrospun composite fibers is added before the calcination. Based on a given electrospinning solution and corresponding composite fiber, the structure of titania fiber is easily adjusted to be rough surface, fiber-in-tube, or a string of many particles by controlling the treating parameters and the calcination temperature, so this method shows a great potential of producing ceramic nanofibers with controlled structures for a large-scale production using a standard electrospinning equipment. The origin behind the morphological change of titania electrospun fibers is intensely studied. The results indicate that the surface structure of titania electrospun fiber formed during the storing period, will become the key factor on the formation of special titania fiber structure during the calcination process with different temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号