首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis of ketanserin ( 5 ) and its hydrochloride salt ( 5.HCl ) using respectively equimolar amounts of 3‐(2‐chloroethyl)‐2,4‐(1H,3H)‐quinazolinedione ( 2 ) with 4‐(parafluorobenzoyl)piperidine ( 3 ) and dihydro‐5H‐oxazole(2,3‐b)quinazolin‐5‐one ( 1 ) with hydrochloride salt of 4‐(parafluorobenzoyl)piperidine ( 3.HCl ) is reinvestigated. The one‐pot reaction of ethyl‐2‐aminobenzoate with ethyl chloroformate and ethanol amine has afforded 3‐(2‐chloroethyl)‐2,4‐(1H,3H)‐quinazolinedione ( 2 ) (86%) that was then refluxed with 4‐(parafluorobenzoyl)piperidine ( 3 ) in ethyl methyl ketone in the presence of sodium carbonate to obtain free base of ketanserin (87%). In another attempt, a very pure hydrochloride salt of ketanserin ( 5.HCl ) was synthesized using equimolar amounts of dihydro‐5H‐oxazole(2,3‐b)quinazolin‐5‐one ( 1 ) and hydrochloride salt of 4‐(parafluorobenzoyl)piperidine ( 3.HCl ) by a solvent‐less fusion method. Thus, under optimized conditions, 180°C and a reaction time of 30 min, the powder mixture was transformed into glassy crystals that were initially readily soluble in chloroform but were transformed afterwards over time (2 h) to white precipitates ( 5.HCl ) suspended in chloroform with a yield of 72%.  相似文献   

2.
ABA triblock copolymers of L ‐lactide (LL) and ε‐caprolactone (CL), designated as PLL‐P(LL‐co‐CL)‐PLL, were synthesized via a two‐step ring‐opening polymerization in bulk using diethylene glycol and stannous octoate as the initiating system. In the first‐step reaction, an approximately 50:50 mol% P(LL‐co‐CL) random copolymer (prepolymer) was prepared as the middle (B) block. This was then chain extended in the second‐step reaction by terminal block polymerization with more L ‐lactide. The percentage yields of the triblock copolymers were in excess of 95%. The prepolymers and triblock copolymers were characterized using a combination of dilute‐solution viscometry, gel permeation chromatography (GPC), 1H‐ and 13C‐NMR, and differential scanning calorimetry (DSC). It was found that the molecular weight of the prepolymer was controlled primarily by the diethylene glycol concentration. All of the triblock copolymers had molecular weights higher than their respective prepolymers. 13C‐NMR analysis confirmed that the prepolymers contained at least some random character and that the triblock copolymers consisted of additional terminal PLL end (A) blocks. From their DSC curves, the triblock copolymers were seen to be semi‐crystalline in morphology. Their glass transition, solid‐state crystallization, and melting temperature ranges, together with their heats of melting, all increased as the PLL end (A) block length increased. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The title compound, C8H17NO2, exists as a zwitterion, adopting a propeller conformation. Molecules self‐assemble to form a hydrogen‐bonded layer parallel to the ab crystallographic plane connected by N+—H...O and C—H...O hydrogen bonds. These layers are stacked along the c axis and are stabilized by van der Waals interactions.  相似文献   

4.
4‐Halo‐2(5H)‐furanones were prepared by the halolactonization of 2,3‐allenoic acids. The subsequent Suzuki coupling reaction of 4‐halo 2(5H)‐furanones with aryl boronic acids was carried out to produce 4‐aryl‐2(5H)‐furanones in excellent yields.  相似文献   

5.
6.
The title compound, (C6H9N2)[ZnCl3(C6H8N2)], consists of one 2‐amino‐5‐methyl­pyridinium cation and one (2‐amino‐5‐methyl­pyridine)trichloro­zincate(II) anion, which are held together by N—H·Cl hydrogen bonds and π–π inter­actions. The cation and the pyridine ligand show similar geometric features, except for the N—C bond lengths. Mol­ecules of the title compound are connected by N—H·Cl hydrogen bonds to form chiral chains; these chains are associated further by C—H·Cl hydrogen bonds to form layers, which are in turn linked by π–π inter­actions.  相似文献   

7.
3(2‐pyridinylmethylene)‐5‐aryl‐2(3H)‐furanones and 3(3‐pyridinylmethylene)‐5‐aryl‐2(3H)‐furanones were prepared as a mixture of (E) and (Z) stereoisomers by condensing pyridine‐2‐carboxaldehyde and pyridine‐3‐carboxaldehyde with 3‐aroylpropionic acids. The reaction of the furanones 6 and 7 with anhydrous aluminium chloride in benzene led to the formation of 4,4‐diaryl‐1‐(2‐pyridinyl)but‐1,3‐diene ( 8 ) and 4,4‐diaryl‐1‐(3‐pyridinyl)but‐1,3‐diene ( 9 ) as mixtures of geometrical (E,E‐ and E,Z‐) stereoisomers via an intermolecular alkylation mode. When the reaction was carried out in tetrachloroethane as a solvent, the reaction of 6 gave 5‐arylquinoline‐7‐carboxylic acid via intramolecular alkylation mode. This may be considered as a novel method for the synthesis of quinoline derivatives. J. Heterocyclic Chem., (2011).  相似文献   

8.
The structure is mononuclear with samarium bound by two η5‐cyclopentadienyl ligands and two chloride ligands, the latter of which bridge to a doubly ether‐solvated lithium centre. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Following the Curie symmetry principle and Aizu rule, we discovered there is a centrosymmetric‐to‐noncentrosymmetric phase transition in Ca(NO3)2(15‐crown‐5) at Tc=205 K. The transition was confirmed by differential scanning calorimetry and second harmonic generation measurements. The transition gives rise to excellent ferroelectricity, such as a giant dielectric anomaly, with faster polarization switching (5×10?5 s) of up to 107 times without showing fatigue. The ferroelectric mechanism is attributable to the coordination environmental distortion of the central Ca atom. This finding can throw light on the further research in metal–organic ferroelectrics.  相似文献   

10.
The title molecule, C9H10N4O3, consists of benzene and imidazole rings which are almost perpendicular to each other. A hydroxyimino group is directly linked to the imidazole ring with a double C=N bond, which is the first example in this type of compound. The double bond may be a good location for the initiation of various reactions with a wide range of potential applications. In the crystal structure, there are π–π interactions between molecules related by a centre of symmetry, with the imidazole and benzene rings almost completely overlapped. The molecules are hydrogen bonded in each direction and form a three‐dimensional hydrogen‐bond network.  相似文献   

11.
The asymmetric unit of the title compound, 3C10H12N22+·2C10H11N2+·8C6H5NO5P, contains one and a half naphthalene‐1,5‐diaminium cations, in which the half‐molecule has inversion symmetry, one 5‐aminonaphthalen‐1‐aminium cation and four hydrogen (5‐carboxypyridin‐3‐yl)phosphonate anions. The crystal structure is layered and consists of hydrogen‐bonded anionic monolayers between which the cations are arranged. The acid monoanions are organized into one‐dimensional chains along the [101] direction via hydrogen bonds established between the phosphonate sites. (C)O—H...Npy hydrogen bonds (py is pyridine) crosslink the chains to form an undulating (010) monolayer. The cations serve both to balance the charge of the anionic network and to connect neighbouring layers via multiple hydrogen bonds to form a three‐dimensional supramolecular architecture.  相似文献   

12.
A preparation of (1′R,2′S,3′R,4′S)‐1‐(2′,3′,4′‐trihydroxycyclopent‐1′‐yl)‐lH‐cytosine (5′‐norcarbodine, 3 ) has formally been achieved in 2 steps from (+)‐(1R,4S)‐4‐hydroxy‐2‐cyclopenten‐1‐yl acetate ( 4 ) and cytosine. The L‐like enantiomer of 3 (that is, 6 ) is also reported using the enantiomer of 4 (that is, 7 ). In evalu ating 3 and 6 for antiviral potential against a number of viruses, compound 3 was found to have activity towards Epstein‐Barr virus (EBV).  相似文献   

13.
In the title compound, alternatively named 5,5′‐diphenyl‐2,2′‐methyleneditetrazole, C15H12N8, the dihedral angles between the tetrazole and benzene rings in the two 5‐phenyl­tetrazole fragments are 2.45 (6) and 10.01 (9)°. There is weak intermolecular C—H?N hydrogen bonding involving the H atoms of the methyl­ene groups, which is responsible for the formation of two‐membered aggregates. C—H?π interactions in the crystal structure are discussed.  相似文献   

14.
Lysine‐specific demethylase 5A (KDM5A) has recently become a promising target for epigenetic therapy. In this study, we designed and synthesized metal complexes bearing ligands with reported demethylase and p27 modulating activities. The Rh(III) complex 1 was identified as a direct, selective and potent inhibitor of KDM5A that directly abrogate KDM5A demethylase activity via antagonizing the KDM5A‐tri‐/di‐methylated histone 3 protein–protein interaction (PPI) in vitro and in cellulo. Complex 1 induced accumulation of H3K4me3 and H3K4me2 levels in cells, causing growth arrest at G1 phase in the triple‐negative breast cancer (TNBC) cell lines, MDA‐MB‐231 and 4T1. Finally, 1 exhibited potent anti‐tumor activity against TNBC xenografts in an in vivo mouse model, presumably via targeting of KDM5A and hence upregulating p27. Moreover, complex 1 was less toxic compared with two clinical drugs, cisplatin and doxorubicin. To our knowledge, complex 1 is the first metal‐based KDM5A inhibitor reported in the literature. We anticipate that complex 1 may be used as a novel scaffold for the further development of more potent epigenetic agents against cancers, including TNBC.  相似文献   

15.
The crystal structure of the title compound, C10H10N2O2·H2O, also known as l ‐5‐benzylhydantoin monohydrate, is described in terms of two‐dimensional supramolecular arrays built up from infinite chains assembled via N—H...O and O—H...O hydrogen bonds among the organic molecules and solvent water molecules, with graph‐set R33(10)C(5)C22(6). The hydrogen‐bond network is reinforced by stacking of the layers through C—H...π interactions.  相似文献   

16.
A nonclassical tetrazole isostere of glycine, viz. zwitterionic 5‐ammoniomethyl‐1H‐tetrazolide, C2H5N5, (I), crystallizes in the chiral P31 space group, similar to γ‐glycine. The crystal packing of (I) is determined by a set of classical hydrogen bonds, forming a three‐dimensional network that is practically the same as that in γ‐glycine. The CuII complex of (I), poly[[bis(μ2‐5‐aminomethyl‐1H‐tetrazolido‐κ3N1,N5:N4)copper(II)] dihydrate], {[Cu(C2H4N5)2]·2H2O}n, (II), is a layered coordination polymer formed as a result of tetrazole ring bridges. The CuII cations lie on inversion centres, are surrounded by four anions and adopt elongated octahedral coordination. Water molecules are located in the interlayer space and connect the layers into a three‐dimensional network via a system of hydrogen bonds.  相似文献   

17.
Reaction of 4,4,4‐trifluoro‐1‐phenyl‐1,3‐butanedione with hydroxylamine led to the formation of 5‐hydroxy‐3‐phenyl‐5‐(trifluoromethyl)‐4,5‐dihydroisoxazole which was dehydrated to 3‐phenyl‐5‐(trifluoro‐methyl)isoxazole. This isomer can also be synthesized by reaction of 4‐chloro‐4‐phenyl‐1,1,1‐trifluoro‐3‐buten‐2‐one with sodium azide. The regioisomer, 5‐phenyl‐3‐(trifluoromethyl)isoxazole was synthesized by reaction of 1,1,1‐trifluoro‐4‐phenylbut‐3‐yn‐2‐one with hydroxylamine and by the reaction of 3‐chloro‐1‐phenyl‐4,4,4‐trifluorobut‐2‐en‐1‐one with sodium azide. Both isomers were characterized by mass and NMR spectroscopy.  相似文献   

18.
The molecules of the title compound, C17H21N3OS, are characterized by a wide C—C—C angle at the methine C atom linking the aryl and thiazolidine rings, associated with a short repulsive intramolecular S...H contact between atoms in these two rings. A single piperidine–arene C—H...π hydrogen bond links pairs of molecules into centrosymmetric dimers.  相似文献   

19.
In the title compound, [Ca(C6H5O4)2(C6H6O4)2]·4H2O, which is a kojic acid–Ca2+ complex, the Ca atom is on a twofold axis and is octacoordinated by O atoms from four pyrone ligand mol­ecules. The hydroxyl and ketone O atoms of each ligand form a five‐membered chelate ring with the Ca atom. The crystal structure is stabilized by partial stacking and O—H?O hydrogen bonds.  相似文献   

20.
Chlorination of the 4‐[chloro(diisopropylamino)phosphino]pyrazole 1 leads to the dichlorophosphonium chloride 2 , which immediately after its formation transforms into the dichloro(diisopropylamino)phosphonio[5(4)oxopyrazol‐4‐ylide‐5‐one] 3 , as a result of dealkylation through loss of ethyl chloride. Reactions of 3 with various nucleophilic reagents were studied. The partial hydrolysis of 3 in the presence of nitriles, resulting in new phosphorus‐containing cyclic systems, is of particular interest. It was demonstrated that chlorination of the P‐dichloropyrazolylphosphine A leads to the stable tetrachlorophosphorane 12 . The C P bond of 12 is broken upon heating. An X‐ray structure determination of compound 11b revealed a planar central heterocycle (mean deviation 0.029 Å). © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:452–458, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10177  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号