首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of template concentration on the radical polymerization of methyl methacrylate along isotactic poly(methyl methacrylate) template was studied. The polymerizations were carried out on three template polymers with different molar masses in dimethylformamide at ?5°C. The initial polymerization rate increased linearly with template concentration until the distribution of template chain segments became homogeneous. At that critical concentration a strong increase in the polymerization rate was observed, whereas still higher template concentrations had only a slight effect on the polymerization rate. The polymerizations were stopped when the weight ratio of formed polymer and template was equal to one. The viscometrically determined molar mass of the formed polymers showed a remarkable behavior in the low template concentration region. It was obviously related to the molar mass of the template polymer and was lower than the molar mass found for blank polymerization. This decrease in molar mass was most pronounced in the case of the lowest template molar mass. It is suggested that nondegradative chain transfer occurring near a template chain end is responsible for this decrease. An increase in the molar mass occurred at the critical concentration, similarly to the change of polymerization rate. However, at still higher template concentrations, where template coils started to overlap each other, the molar mass of the formed polymers increased further. The growing chains could leap from one template chain to another and attain a greater chain length than the blank polymerizate.  相似文献   

2.
The concentration dependence of the reduced viscosity of dilute polymer solution is interpreted in the light of anew concept of the self-association of polymer chains in dilute solution. The apparent self-association constant is defined asthe molar association constant divided by the molar mass of individual polymer chain and is numerically interconvertiblewith the Huggins coefficient. The molar association constant is directly proportional to the effective hydrodynamic volume ofthe polymer chain in solution and is irrespective of the chain architecture. The effective hydrodynamic volume accounts forthe non-spherical conformation of a short polymer chain in solution and is a product of a shape factor and hydrodynamicvolume. The observed enhancement of Huggins coefficient for short chain and branched polymer is satisfactorily interpretedby the concept of self-association. The concept of self-association allows us to predict the existence of a boundaryconcentration C_s (dynamic contact concentration) which divides the dilute polymer solution into two regions.  相似文献   

3.
A thermodynamic analysis of the interaction between fourteen different molar mass poly(ethylene oxide)s (PEO) and sodium dodecyl sulfate (SDS) based on the measured surfactant-binding isotherms is given. The surfactant-binding isotherms were determined by the potentiometric method in the presence of 0.1 M inert electrolyte (NaBr). It was found that there is no PEO/SDS complex formation if M(PEO) < 1000. In the molecular weight range 1000 < M(PEO) < 8000, the critical aggregation concentration (cac) and the surfactant aggregation number are decreasing as the polymer molecular weight increases. The saturated bound surfactant amount is proportional to the number concentration of the polymer in this molecular weight range. If M(PEO) exceeds approximately 8000, the cac does not depend on the polymer molar mass, and the saturated bound amount of the surfactant becomes proportional to the mass concentration of the polymer. It was also observed that independently of the polymer molecular weight the surfactant aggregation number increases as the equilibrium surfactant monomer concentration increases from the cac to the critical micellar concentration (cmc). Finally, it was demonstrated that only one polymer molecule is involved in the complex formation independently of the polymer molecular weight.  相似文献   

4.
We present a kinetic model of crystal growth of polymers of finite molecular weight. Experiments help to classify polymer crystallization broadly into two kinetic regimes. One is observed in melts or in high molar mass polymer solutions and is dominated by nucleation control with G approximately exp(1/TDeltaT), where G is the growth rate and DeltaT is the supercooling. The other is observed in low molar mass solutions (as well as for small molecules) and is diffusion controlled with G approximately DeltaT, for small DeltaT. Our model unifies these two regimes in a single formalism. The model accounts for the accumulation of polymer chains near the growth front and invokes an entropic barrier theory to recover both limits of nucleation and diffusion control. The basic theory applies to both melts and solutions, and we numerically calculate the growth details of a single crystal in a dilute solution. The effects of molecular weight and concentration are also determined considering conventional polymer dynamics. Our theory shows that entropic considerations, in addition to the traditional energetic arguments, can capture general trends of a vast range of phenomenology. Unifying ideas on crystallization from small molecules and from flexible polymer chains emerge from our theory.  相似文献   

5.
The dispersion behavior of polystyrene-coated iron oxide nanoparticles, referred to as FeOx@PS, is explored in the Theta-solvent cyclohexane in dependency of the temperature, particle size, and polymer concentration. Two different transitions are observed. A volume transition of the particle shell occurs on crossing the Theta-temperature, as detected by dynamic light scattering. In the higher concentration regime, a reversible, particle-agglomeration-induced phase separation is observed by means of cloud point photometry, and the dependency of the phase separation behavior on the concentration and molar mass of the polymeric arms is investigated. Studies concerning both phenomena are compared with the phase behavior of linear PS with high molar mass.  相似文献   

6.
Competitive adsorption of the nonionic polymer poly(ethylene oxide) (PEO) and the nonionic surfactant of the type poly(ethylene oxide) alkyl ether from aqueous solutions on a silica surface is examined. From one-component solutions, both species readily adsorb onto silica and, in the bulk of mixed (two-component) solutions, polymer-surfactant complexes are not observed. Because both species bind by the same mechanism to silica, subtle differences in layer structure, or other species-specific parameters, determine whether one or both of the species will adsorb. It was found that various surfactants can displace PEO up to a certain critical molecular weight. Surfactants with a high aggregation number, in bulk and on the surface, can displace PEO with a higher molar mass than surfactants with a low aggregation number. As the molar mass of the polymer increases, the time a surfactant needs to completely displace the polymer increases. We can explain both the existence of the critical molar mass and the decrease in adsorption kinetics with a shift in the critical surface association concentration (CSAC).  相似文献   

7.
Drag reduction in Taylor flow of polystyrene solutions is investigated using a commercial rheometer equipped with a standard double-gap sample holder with axial symmetry. The dependence of drag reduction on various factors, including polymer molar mass, polymer concentration, and thermodynamic conditions is studied. Drag reduction induced by polystyrene in toluene is found to increase with increasing polymer concentration in the dilute concentration regime. It is also seen that molecules with high molar mass of the polymer promote drag reduction. In terms of hydrodynamic volume fraction normalisation, it is found that most of the drag reduction effect occurs at volume fractions below 0.2. It is observed that drag reduction is favoured by good thermodynamic conditions of the polymer-solvent system. Both the flow induced extension of the polymer chains and the hydrodynamic volume fraction occupied by the polymer molecules seem to play an important role for the drag reduction effect.  相似文献   

8.

The rheological behavior of dope solutions of poly(acrylonitrile‐co‐itaconic acid) or poly(AN‐co‐IA) is important from the point of view of deriving the spinning conditions for good quality special acrylic fibers. The viscosity of the resin dope is dictated by the polymer concentration, molar mass, temperature and shear force. The dynamic shear rheology of concentrated poly(AN‐co‐IA) polymer dope solutions in N, N‐dimethylformamide, in the molar mass (M¯v) range of 1×105 to 1×106 g/mol, was investigated in the shear rate (γ′) range of 1×101 to 5×104 min?1. An empirical relation between η and M¯v was found to exist at constant shear rate. The dope viscosity was dependent on the molar mass and the shear rate at a given temperature (T) and concentration. The polymer molar mass index of dope viscosity (m) was calculated as functions of concentration (c), shear rate and temperature. The m values increased with shear rate and temperature. A master equation relating m, with shear rate and temperature was derived for a given dope concentration. At higher shear rates, m tends to the value of 3.4, which is close to the molar mass index of viscosity reported for molten thermoplastics. m increased significantly with shear rate and nominally with temperature, while an increase in concentration decreased it. The onset of shear thinning of the dope shifted to a lower shear rate regime with an increase in polymer concentration and the molar mass. For a given value of molar mass, the increase in viscosity of the dope solution with polymer concentration was dependent on the shear rate.  相似文献   

9.
Sun M  Lin JS  Barron AE 《Electrophoresis》2011,32(22):3233-3240
Double-stranded (ds) DNA fragments over a wide size range were successfully separated in blended polymer matrices by microfluidic chip electrophoresis. Novel blended polymer matrices composed of two types of polymers with three different molar masses were developed to provide improved separations of large dsDNA without negatively impacting the separation of small dsDNA. Hydroxyethyl celluloses with average molar masses of ~27 kDa and ~1 MDa were blended with a second class of polymer, high-molar mass (~7 MDa) linear polyacrylamide. Fast and highly efficient separations of commercially available DNA ladders were achieved on a borosilicate glass microchip. A distinct separation of a 1-kb DNA extension ladder (200-40,000 bp) was completed in 2 min. An orthogonal design of experiments was used to optimize experimental parameters for DNA separations over a wide size range. We find that the two dominant factors are the applied electric field strength and the inclusion of a high concentration of low-molar mass polymer in the matrix solution. These two factors exerted different effects on the separations of small dsDNA fragments below 1 kbp, medium dsDNA fragments between 1 and 10 kbp, and large dsDNA fragments above 10 kbp.  相似文献   

10.
For the first time the possibility to obtain nanostructures by self‐assembly of chitosan polyampholytic derivative was demonstrated. The self‐assembly of N‐carboxyethylchitosan (CECh) took place only near its isoelectric point (pH 5.0–5.6). Out of the pH range 5.0–5.6, CECh aqueous solutions behaved as real solutions. Dynamic light scattering and atomic force microscopy analyses revealed that spherically shaped or rod/worm‐like nanosized assemblies were formed depending on the polymer molar mass, pH value, and polymer concentration. CECh of two different molar masses was studied in concentrations ranging from 0.01 to 0.1 mg/mL. The structures from CECh of weight‐average molar mass (Mw ) 4.5 × 103 g/mol were spherical regardless the pH and polymer concentration. In contrast, CECh of high molar mass (HMMCECh, Mw = 6.7 × 105 g/mol) formed self‐assemblies with spherical shape only at pH 5.0 and 5.6. At pH 5.2 spherical nanoparticles were obtained only at polymer concentration 0.01 mg/mL. The mean hydrodynamic diameter (Dh) of the obtained nanoparticles was in the range from 30 to 980 nm. On increasing the concentration, aggregation of the nanoparticles appeared, and at HMMCECh concentration 0.1 mg/mL, rod/worm‐like structures were obtained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6712–6721, 2008  相似文献   

11.
The expressions for polymer self-diffusion in semidilute solutions, theoretically derived from the reptation mechanism, the blob concept and scaling considerations, are discussed and compared against experimental data from the authors' investigations and the literature. In the nonentangled (from viscoelastic data) semidilute solution, the experimentally observed concentration and molar mass exponents are in fair agreement with those derived theoretically. However, a quantitative estimation shows that the experiments cannot be explained by reptation. Experiments with polymer mixtures also give strong evidence against reptation. It is concluded, that in the nonentangled semidilute solution, the polymer self-diffusion is more complicated than simple reptation. This is also supported by recently observed long-range density fluctuations or cluster formation in this concentration region detected by scattering techniques and NMR-PFGT. In the entangled semidilute solution, the self-diffusion data are in accordance with the reptation mechanism; reptation being within a tube having approximately 20 blobs between entanglements.  相似文献   

12.
Results on the intrinsic viscosity [η] are reported for the system solvent(1)/polymer(2)/polymer(3) in which the solvent was benzene, polymer(2) was polystyrene (PS), and polymer(3) was poly(dimethylsiloxane) PDMS. The values of [η] were then used to determine the likely compatibility of polymer blends of PS and PDMS. Initial focus was on the traditional interaction parameter b 23 (1) used by several authors to predict compatibilities, it but depends on the molar mass, weight fractions, and concentrations of each polymer. A new interaction parameter b 23 (2) that is independent of polymer(3) concentration and molar mass was evaluated for determinations of polymer compatibility.  相似文献   

13.
A novel high performance liquid chromatographic method for separation of synthetic polymers has been tested. It involves combination of the enthalpic and entropic retention mechanisms, resulting in increased selectivity of separation within a specific molar mass range. In this present case, the enthalpic retention mechanism is adsorption of macromolecules on a bare silica gel column packing. Under critical conditions of enthalpic interactions, homopolymers are known to elute irrespective of their molar mass. However, in the vicinity of critical conditions, a situation can be identified when retention volumes (V(R)) rapidly decrease with increasing molar mass. Typically, this happens for polymer species close to or above their exclusion limit observed with the same column in the absence of enthalpic interactions between macromolecules and packing, that is near "ideal SEC" conditions. The dependence of polymer retention volume on molar mass closely resembles size exclusion conditions. However, the witnessed rate of change in V(R )with polymer molar mass is more pronounced, thus indicating increased selectivity of separation. This situation not only offers the benefit of more selective separation according to molar mass but efficient discrimination of macromolecules possessing different nature and interactivity with the column packing can be accomplished as well.  相似文献   

14.
When a solvent drop evaporates from a polymer surface, it leaves behind a characteristic structure, typically a crater. We deposited toluene drops with a microsyringe onto planar polystyrene (PS) surfaces and analyzed the surface topography after drying. For low molar mass PS (Mw = 20.9-24.3 kDa) dotlike protrusions with a ridge at the periphery formed on the polymer surface. With increasing molar mass the central region decreased in height. At Mw = 29.6-643 kDa a craterlike structure with a depression in the center and a ridge was observed. At even higher molar mass, irregular structures without rotational symmetry occurred. We explain the observed dependence on the molar mass with a different degree of entanglement, leading to different dissolution rates and different diffusion constants.  相似文献   

15.
Nanogels are highly branched, swellable polymer structures with average diameters between 1 and 100nm. Size-exclusion chromatography (SEC) fractionates materials in this size range, and it is commonly used to measure nanogel molar mass distributions. For many nanogel applications, it may be more important to calculate the particle size distribution from the SEC data than it is to calculate the molar mass distribution. Other useful nanogel property distributions include particle shape, area, and volume, as well as polymer volume fraction per particle. All can be obtained from multi-detector SEC data with proper calibration and data analysis methods. This work develops the basic equations for calculating several of these differential and cumulative property distributions and applies them to SEC data from the analysis of polymeric nanogels. The methods are analogous to those used to calculate the more familiar SEC molar mass distributions. Calibration methods and characteristics of the distributions are discussed, and the effects of detector noise and mismatched concentration and molar mass sensitive detector signals are examined.  相似文献   

16.
Polystyrenes containing fluorescence end-groups were prepared by nitroxide-mediated radical polymerization. Combined molar mass regulator contained besides alkoxyamine part the structure of fluorescence mark. Stable nitroxyl radical represented 2,2,6,6-tetramethylpiperidine-Noxyl and covalently bonded fluorescence mark was benzothioxanthene. A fluorescence method as well as UV absorption was employed for measuring the concentration of nitroxyl-terminated chains in polystyrene samples. Theoretical molar masses of polystyrenes were calculated from these concentrations on the assumption that all polystyrene chains are terminated by alkoxyamine dormant end-functionality bearing fluorescence probe. Comparisons of these data with the molar masses from GPC gave us the range of the marked active polymer chain ends. Fractions of active polymer chain ends depended on the conversion. With increased conversion the fraction of polystyrene chains terminated by alkoxyamine was decreased. From this follows that the “livingness” of polymerization process decreased with the increasing of conversion. It should result in higher extent of termination and subsequently in the increasing of polydispersity with increased conversion. Despite this the observed polydispersity was the same for all conversion and reached the value ca. 1.3. The changing viscosity is responsible for the constant polydispersity.  相似文献   

17.
18.
Non-aqueous size exclusion chromatography (SEC) of polystyrenes (as model analytes) is examined using the microscale molar mass sensor (μ-MMS) for detection. The μ-MMS is combined with SEC to demonstrate this simultaneously universal and molar mass selective detection method for polymer characterization. The μ-MMS is based on measuring the refractive index gradient (RIG) at two positions (upstream and downstream) within a T-shaped microfluidic channel. The RIG is produced from a sample stream (eluting analytes in the mobile phase) merging with a mobile phase stream (mobile phase only). The magnitude of the RIG is measured as a probe beam deflection angle and is related to analyte diffusion coefficient, the time allowed for analyte diffusion from the sample stream toward the mobile phase stream, and the bulk phase analyte refractive index difference relative to the mobile phase. Thus, two deflection angles are measured simultaneously, the upstream angle and the downstream angle. An angle ratio is calculated by dividing the downstream angle by the upstream angle. The μ-MMS was found to extend the useful molar mass calibration range of the SEC system (nominally limited by the total exclusion and total permeation regions from ∼100,000 g/mol to ∼800 g/mol), to a range of 3,114,000-162 g/mol. The injected concentration LOD (based on 3 s statistics) was 2 ppm for the upstream detection position. The point-by-point time-dependent ratio, termed a ‘ratiogram’, is demonstrated for resolved and overlapped peaks. Within detector band broadening produces some anomalies in the ratiogram shapes, but with highly overlapped distributions of peaks this problem is diminished. Ratiogram plots are converted to molar mass as a function of time, demonstrating the utility of SEC/μ-MMS to examine a complex polymer mixture.  相似文献   

19.
Electrospray ionization (ESI) is capable of ionizing many soluble polymers. The ESI spectra are complex because of overlap of the multiply charged ions of the oligomer distribution, causing current computer transform programs to fail. However, it is possible to determine the origin of the multiply charged ions, making it feasible to write a program designed to transform ESI polymer spectra. To assess the value of such a program for polymer analysis, isolated monodisperse methyl methacrylate (MMA) oligomers (25 and 50 repeat units) were used to determine molar signal response and propensity for fragmentation. The sum of the peak areas for the multiply charged MMA 50-mer was found to be only about 66% of the summed peak areas for the 25-mer for the same molar concentration. However, conversion of the multiply charged peak areas to the singly charged representations, with peak area compression taken into account, gave equal signal responses for the 25-and 50-mers. Signal response variations due to the tacticity of the MMA oligomers were not observed. Fragmentation of the MMA oligomers also was shown not to occur under normal ESI conditions. Therefore, transformation of the polymer spectra to the singly charged molecular ion distribution should allow accurate calculation of average molecular weights, polydispersity, end group mass, and repeat unit mass.  相似文献   

20.
Simulating polymer separation in flow-through channels of monolithic columns, separation of a mixture of polystyrene standards was investigated using open tubular capillary column of 2 μm inner diameter. High column efficiency was observed for polymers of molar mass ranged from few tens to few hundred kDas. Column efficiency significantly decreased for polymers with molar mass larger than 500 kDa nevertheless preserving value of few tens of thousands theoretical plates. Calibration curve observed for open capillary column is rather steep and can be well described by simple equation without quadratic term. In spite of low selectivity, capillary columns were able in separating wide range of polystyrene standards due to column high efficiency and in such a way supported an idea of hydrodynamic mechanism of polymer separation in flow-through channel of monolithic packings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号