首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Dynamics of protein side chains is one of the principal determinants of conformational entropy in protein structures and molecular recognition events. We describe NMR experiments that rely on the use of magic-angle pulses for efficient isolation of degenerate 1H transitions of the I=3/2 manifold of 13CH3 methyl groups, and serve as ‘building blocks’ for the measurement of transverse spin relaxation rates of the fast- and slow-relaxing 1H transitions – the primary quantitative reporters of methyl axis dynamics in selectively {13CH3}-methyl-labelled, highly deuterated proteins. The magic-angle-pulse driven experiments are technically simpler and, in the absence of relaxation, predicted to be 2.3-fold more sensitive than previously developed analogous schemes. Validation of the methodology on a sample of {13CH3}-labeled ubiquitin demonstrates quantitative agreement between order parameters of methyl three-fold symmetry axis obtained with magic-angle-pulse driven experiments and other established NMR techniques, paving the way for studies of methyl axis dynamics in human DNAJB6b chaperone, a protein that undergoes exchange with high-molecular-weight oligomeric species.  相似文献   

2.
Abstract

A new series of water soluble platinum(II) complexes of the type [Pt(DACH)[R-CH(COO)2]], wherein DACH represents IR,2R-cyclohexanediamine and R represents formamido. acetamido, (penta-O-acctyl-gluconyl)amino, and gluconylamino have been synthesized. The modes of binding of amidodicarboxylic acid derivatives in these complexes have been determined by various spectroscopic techniques: 1H, 13 C, and 195PtNMR; 2D-COSY{1H-1H} and 2D-HETCOSY{1H-13C} NMR, MS(FAB), IR and conductivity measurements.  相似文献   

3.
Proton spectroscopy in solid-state NMR on catalytic materials offers new opportunities in structural characterization, in particular of reaction products of catalytic reactions such as hydrogenation reactions. Unfortunately, the 1H NMR line widths in magic-angle spinning solid-state spectra are often broadened by an incomplete averaging of 1H-1H dipolar couplings. We herein discuss two model compounds, namely the H2-splitting products of two phosphane-borane Frustrated Lewis Pairs (FLPs), to study potentials and limitations of proton solid-state NMR experiments employing magic-angle spinning frequencies larger than 100 kHz at a static magnetic field strength of 20.0 T. The 1H lines are homogeneously broadened as illustrated by spin-echo decay experiments. We study two structurally similar materials which however show significant differences in 1H line widths which we explain by differences in their 1H-1H dipolar networks. We discuss the benefit of fast MAS experiments up to 110 kHz to detect the resonances of the H+/H pair in the hydrogenation products of FLPs.  相似文献   

4.
The method for preparation of ethyl α-nitrocinnamates by nitroacetic acid ester alkenylation with aromatic aldehydes in the presence of acetic acid and β-alanine has been modified. Structures of the prepared compounds have been proved by electronic, IR, 1H, and 13C-{1H} NMR spectroscopy (including heteronuclear correlation experiments 1H-13C HMQC and 1H-13C HMBC). In solution these compounds exist in the form of Z-isomer; the Z?E isomerization is observed in the case of the compound containing strong electron-donor group [N(CH3)2] at benzene ring.  相似文献   

5.
Copolymerization of isobornyl methacrylate and methyl acrylate ( I/M ) is performed by atom transfer radical polymerization using methyl‐2‐bromopropionate as an initiator and PMDETA/CuBr as catalyst under nitrogen atmosphere at 70 °C. The copolymer compositions determined from 1H NMR spectra are used to determine reactivity ratios of the monomers. The reactivity ratio determined from linear Kelen–Tudos method and non‐linear error‐in‐variable method, are rI = 1.25 ± 0.10, rM = 0.84 ± 0.08 and rI = 1.20, rM = 0.82, respectively. 1D, distortion less enhancement by polarization transfer and 2D, heteronuclear single quantum coherence, and total correlation spectroscopy NMR experiments are employed to resolve highly overlapped and complex 1H and 13C{1H} NMR spectra of the copolymers. The carbonyl carbon of I and M units and methyl carbon of I unit are assigned up to triad compositional and configurational sequences, whereas β‐methylene carbons are assigned up to tetrad compositional and configurational sequences. Similarly, methine carbon of I unit is assigned up to triad level. The couplings of carbonyl carbon and quaternary carbon resonances are studied in detail using 2D hetero nuclear multiple bond correlation spectra. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
A fast residual dipolar coupling constant‐assisted strategy involving the simultaneous determination of scalar and total coupling constants from a single 1JCH/2JHH‐resolved NMR spectrum is reported. It is shown that the concerted use of the directly measured 1DCH (for all CHn multiplicities) and 2DHH residual dipolar couplings allows an on‐the‐fly assignment of diastereotopic CH2 protons, as well as of an efficient discrimination between diastereoisomeric structures of strychnine which contains six stereocenters. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
S. Braun  J. Kinkeldei 《Tetrahedron》1977,33(23):3127-3132
The vicinal couplings of ring hydrogens to methyl C atoms (3JCH3H) in 22 methyl substituted non-benzenoid polycyclic conjugated hydrocarbons have been determined from the undecoupled 13C NMR spectra and have been correlated with bond lengths as well as with the corresponding vicinal H,H couplings, which are taken partly from own 1H NMR analysis and partly from literature. As a result the (3JCH3H) couplings of sterically unperturbated methyl groups in 7-membered rings are proportional to the corresponding 3JHH values which is indicative of comparable influences, but both types of vicinal couplings are not dependent on bond lengths only. Moreover they are to a large extent determined by the CCH bond angles θ and θ', which show a significant variation in condensed 7-membered rings so that this twofold dependence has to be taken into account for structure determinations.  相似文献   

8.
The assignment of the signals in the 13C and 1H NMR spectra of N-phenyl-2,4-dimethylbuta-1,3-diene-1,4-sultam is difficult for the signal pairs C-2 and C-4, C-1 and C-3, (C-1)? H, (C-2)? CH3 and (C-4)? CH3. The 13C NMR spectrum recorded under gated decoupling conditions provide long-range couplings which make possible an unambiguous assignment of the 13C NMR signal pairs. Application of the 1H CW off-resonance decoupling technique in recording the 13C NMR spectra enables the assignment information from the 13C NMR spectrum to be transferred to the 1H NMR spectrum.  相似文献   

9.
High‐spin FeII–alkyl complexes with bis(pyridylimino)isoindolato ligands were synthesized and their paramagnetic 1H and 13C NMR spectra were analyzed comprehensively. The experimental 13C—1H coupling values are temperature (T?1)‐ as well as magnetic‐field (B2)‐dependent and deviate considerably from typical scalar 1JCH couplings constants. This deviation is attributed to residual dipolar couplings (RDCs), which arise from partial alignment of the complexes in the presence of a strong magnetic field. The analysis of the experimental RDCs allows an unambiguous assignment of all 13C NMR resonances and, additionally, a structural refinement of the conformation of the complexes in solution. Moreover the RDCs can be used for the analysis of the alignment tensor and hence the tensor of the anisotropy of the magnetic susceptibility.  相似文献   

10.
C. Canlet  B. M. Fung 《Liquid crystals》2013,40(12):1863-1872
Long range dipolar coupling constants have been determined in three ferroelectric liquid crystals in their racemic forms using 13C NMR. Two of these liquid crystals are esters of α-chloroacids and 4-octyloxy-4'-hydroxybiphenyl, and have a very large spontaneous polarization in the smectic C* phase. The strategy used in the present study is the observation and measurement of 2H-13C splittings in the 13C spectra of monodeuterated compounds. The order parameters were calculated from the 1D spectra, and some of the coupling constants are compared with the 1H-13C coupling constants previously obtained from 2D experiments. In addition, the deuterium quadrupole splitting of these compounds was determined from their 2H NMR spectra. The experiments were carried out over the whole mesomorphic ranges of the liquid crystals, covering the smectic A and smectic C phases.  相似文献   

11.
Unsaturated poly(ethylene-co-5-vinyl-2-norbornene) was synthetized using the [Ph2C(Flu)(Cp)]ZrCl2 metallocene/methylaluminoxane (MAO) catalyst system. 1H and 13C NMR spectra of the copolymer were assigned by means of DEPT, homonuclear 2D 1H-1H COSY, and heteronuclear 2D 1H-13C correlation NMR experiments. The used catalyst system produces mainly isolated 5-vinyl-2-norbornene (VNB) sequences. VNB is incorporated selectively via the cyclic double bond. The unreacted double bond of the copolymer exists in the 5-endo: 5-exo positions (3 : 1). Both isomers of VNB are polymerized with the same propability.  相似文献   

12.
Reaction of [Ni(dppe)Cl2/Br2] with AgOTf in CH2Cl2 medium following ligand addition leads to [Ni(dppe)(OSO2CF3)2] and then [Ni(dppe)(RaaiR)](OSO2CF3)2 [RaaiR′ = p–R–C6H4–N=N–C3H2–NN-1–R′,(1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), OSO2CF3 is the triflate anion]. 31P{1H}-NMR confirm that stable bis-chelated square planar Ni(II) azoimine–dppe complex formation with one sharp peaks. The 1H NMR spectral measurements suggest azoimine link is present with lot of phenyl protons in the aromatic region. Considering all the moities there are a lot of different carbon atoms in the molecule which gives many different peaks in the 13C(1H)-NMR spectrum. In the 1H-1H COSY spectrum in the present complexes and contour peaks in the 1H-13C-HMQC spectrum in the present complexes, assign the solution structure and stereoretentive conformation in each complexes.  相似文献   

13.
The configurational assignment of poly(vinylpyrrolidone) (PVP) prepared by peroxide-initiated solution polymerization was studied by the combination of one- and two-dimensional NMR spectroscopy. The broad and overlapping 1H-NMR and 13C{1H}-NMR spectra of PVP were assigned to the configurational triad, pentad (CH, 2CH2, 3CH2, and 4CH2 regions), and tetrad (β-CH2 region) sequences. The configurational assignments of the various carbon resonances were confirmed with the help of two-dimensional experiments such as heteronuclear single quantum correlation (HSQC), heteronuclear single quantum correlation–total correlation spectroscopy (2-D HSQC–TOCSY). The various geminal and vicinal couplings within the configurational sequences were assigned with the help of total correlation spectroscopy (TOCSY low mixing time). The propagation pathway was studied using the 13C{1H}-NMR (carbonyl carbon) and 15N{1H}-NMR spectra. The 15N{1H} resonance signals were assigned to pentad-level configurational sequences. The results obtained by the analysis of the area under the resonance signals confirmed that poly(vinylpyrrolidone) obeys Bernoullian statistics. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3922–3928, 1999  相似文献   

14.
Provided that 13C‐detected NMR experiments are either preferable or complementary to 1H detection, we report here tools to determine Cα? C′, C′? N, and Cα? Hα residual dipolar couplings on the basis of the CON experiment. The coupling constants determined on ubiquitin are consistent with the subset measured with the 1H‐detected HNCO sequences. Since the utilization of residual dipolar couplings may depend on the mobility of the involved nuclei, we also provide tools to measure longitudinal and transverse relaxation rates of N and C′. This new set of experiments is a further development of a whole strategy based on 13C direct‐detection NMR spectroscopy for the study of biological macromolecules.  相似文献   

15.
16.
Strong line-narrowing effects in solid-state, magic-angle-spinning (MAS) 13C- as well as 1H-NMR spectra of benzenoid aromatics adsorbed at alumina or silica surfAccs indicate high mobility of the organic adsorbates. Even under modest spinning rales (1 kHz), dipolar couplings are sufficiently reduced to allow scalar 13C,1H couplings to be measured. Hetero- and homonuclear pulse sequences known from high-resolution NMR in liquids, like SEFT, J-RESOLVED, DEPT, COSY, and 13C,1H shift-correlation experiments are successfully applicable. 13C spin-lattice relaxation limes are as short as 0.5 s (CH) and 1.1 s (Cq), and T1(1H) values are in the order of 0.3 s.  相似文献   

17.
Two new symmetric double‐armed oxadiazole‐bridged ligands, 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate (L1) and 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate (L2), were prepared by the reaction of 2,5‐bis(2‐hydroxy‐5‐methylphenyl)‐1,3,4‐oxadiazole with nicotinoyl chloride and isonicotinoyl chloride, respectively. Ligand L1 can be used as an organic clip to bind CuII cations and generate a molecular complex, bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate)bis(perchlorato)copper(II), [Cu(ClO4)2(C28H20N4O5)2], (I). In compound (I), the CuII cation is located on an inversion centre and is hexacoordinated in a distorted octahedral geometry, with the pyridine N atoms of two L1 ligands in the equatorial positions and two weakly coordinating perchlorate counter‐ions in the axial positions. The two arms of the L1 ligands bend inward and converge at the CuII coordination point to give rise to a spirometallocycle. Ligand L2 binds CuI cations to generate a supramolecule, diacetonitriledi‐μ3‐iodido‐di‐μ2‐iodido‐bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate)tetracopper(I), [Cu4I4(CH3CN)2(C28H20N4O5)2], (II). The asymmetric unit of (II) indicates that it contains two CuI atoms, one L2 ligand, one acetonitrile ligand and two iodide ligands. Both of the CuI atoms are four‐coordinated in an approximately tetrahedral environment. The molecule is centrosymmetric and the four I atoms and four CuI atoms form a rope‐ladder‐type [Cu4I4] unit. Discrete units are linked into one‐dimensional chains through π–π interactions.  相似文献   

18.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

19.
Reaction of [Au(C6F5)(PPh3)(OSO2CF3)2] with RaaiR′ in dichloromethane medium followed ligand addition leads to [Au(PPh3)(C6F5)(RaaiR′)](OSO2CF3)2 where RaaiR′ = p-R-C6H4-N=N-C3H2-NN-1-R′ (I–III), abbreviated as N, N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (I), CH2CH3 (II), CH2Ph (III), PPh3 is triphenylphosphine, OSO2CF3 is the triflate anion. The maximum molecular peak of the corresponding molecule is observed in the ESI mass spectrum. IR spectra of the complexes show -C=N- and -N=N- stretching near at ∼1590 and 1370 cm−1 and at ∼1100, 755, 695, 545, and 505 cm−1 due to the presence of triphenylphosphine and pentafluoropheny ring. The 1H NMR spectral measurements suggest methylene (-CH2-) in RaaiEt that gives a complex AB type multiplet with coupling constant of av. 6.6 Hz while in RaaiCH2Ph it shows AB type quartets with coupling constant of av. 6.2 Hz. Considering all the moitie there are a lot of different carbon atoms in the molecule which gives a lot of eleven different peaks in the 13C {1H}NMR spectrum. In the 1H-1H COSY NMR spectrum of the present complexes and contour peaks in the 1H-13C HMQC NMR spectrum in the present complexes, assign the solution structure and stereo-retentive transformation in each step. The article is published in the original.  相似文献   

20.
Electrophilic trisubstituted ethylene monomers, alkyl ring substituted methyl 2‐cyano‐3‐phenyl‐2‐propenoates, RC6H4CH[dbnd]C(CN)CO2CH3, where R is 2‐methyl, 3‐methyl, 4‐methyl, 4‐isopropyl, and 2,5‐dimethyl were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and methyl cyanoacetate, and characterized by CHN elemental analysis, IR, 1H and 13C NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (AIBN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 260–400°C range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号