首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study a simple, fast, sensitive and robust method to quantify mirtazapine in human plasma using quetiapine as the internal standard (IS) is described. The analyte and the IS were extracted from human plasma by a simple protein precipitation with methanol and were analyzed by high‐performance liquid chromatography coupled to an electrospray tandem triple quadrupole mass spectrometer (HPLC‐ESI‐MS/MS). Chromatography was performed isocratically on a C18, 5 µm analytical column and the run time was 1.8 min. The lower limit of quantitation was 0.5 ng/mL and a linear calibration curve over the range 0.5–150 ng/mL was obtained, showing acceptable accuracy and precision. This analytical method was applied in a relative bioavailability study in order to compare a test mirtazapine 30 mg single‐dose formulation vs a reference formulation in 31 volunteers of both sexes. The study was conducted in an open randomized two‐period crossover design and with a 14 day washout period. Since the 90% confidence interval for Cmax, AUClast and AUC0–inf were within the 80–125% interval proposed by the Food and Drug Administration and ANVISA (Brazilian Health Surveillance Agency), it was concluded that mirtazapine 30 mg/dose is bioequivalent to the reference formulation, according to both the rate and extent of absorption. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A simple and rapid HPLC–MS/MS method was developed and validated for simultaneous measurement of phosphocreatine and its metabolites creatine and creatinine in children's plasma. A 50 μL aliquot of plasma was prepared by protein precipitation with acetonitrile–water (1000 μL, 1:1, v/v) followed by separation on a Hypersil Gold C18 column (35°C) with gradient mobile phase consisting of 2 mm ammonium acetate aqueous solution (pH 10) and methanol at a flow rate of 0.3 mL/min and analyzed by mass spectrometry in both positive (phosphocreatine) and negative (creatine and creatinine) ion multiple reaction monitoring mode. Good linearity (r > 0.99) was obtained for the three analytes. The intra‐day and inter‐day values of CV were <5.46% (?13.09% ≤ RE ≤ 2.57%). The average recoveries of the three analytes were 70.9–97.5%. No obvious impact was found for the quantitation of three analytes in normal, hemolyzed and hyperlipemic plasma. In the end, this method was successfully applied to a pharmacokinetic study of phosphocreatine in children (six cases) with viral myocarditis of children after intravenous infusion of 2 g of the test drug. The pharmacokinetc parameters of phosphocreatine/creatine were as follows: t1/2 0.24/0.83 h, Tmax 0.49/0.55 h, Cmax 47.34/59.29 μg/mL, AUClast 17.07/59.63 h μg/mL, AUCinf 17.16/79.01 h μg/mL and MRT 0.29/0.67 h.  相似文献   

3.
In this study, a sensitive, simple and reliable method for the quantification of docetaxel in rat plasma was developed and validated using liquid chromatography–tandem mass spectrometry (LC‐MS/MS). The plasma samples were prepared by protein precipitation, and paclitaxel was used as an internal standard (IS). Chromatographic separation was achieved using a Gemini C18 column (2.0 × 150 mm, 5 µm) with a mobile phase consisting of 0.1% formic acid–acetonitrile (30:70, v/v). The precursor–product ion pairs used for multiple reaction monitoring were m/z 808.5 → 527.5 (docetaxel) and m/z 854.2 → 286.5 (IS, paclitaxel). A calibration curve for docetaxel was constructed over the range 1–1000 ng/mL. The developed method was specific, precise and accurate, and no matrix effect was observed. The validated method was applied in a comparative pharmacokinetic study in which two docetaxel formulations, SID530, a new parenteral formulation of docetaxel with hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD), and Taxotere, were administered to rats at a dose of 5 mg/kg. For SID530 and Taxotere, the mean C0 values were 1494 and 1818 ng/mL, respectively, and the AUClast values were 837 and 755 h ng/mL, respectively. These two formulations did not show any statistical differences with regard to the pharmacokinetic parameters, thus establishing that the SID530 and Taxotere products are pharmacokinetically comparable in male rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The validation of a high throughput and specific method using a high‐performance liquid chromatography coupled to electrospray (ES+) ionization tandem triple quadrupole mass spectrometric (LC‐ESI‐MS/MS) method for ondansetron quantification in human plasma is described. Human plasma samples were extracted by liquid–liquid extraction (LLE) using methyl tert‐butyl ether and analyzed by LC‐ESI‐MS/MS. The limit of quantification was 0.2 ng/mL and the method was linear in the range 0.2–60 ng/mL. The intra‐assay precisions ranged from 1.6 to 7.7%, while inter‐assay precisions ranged from 2.1 to 5.1%. The intra‐assay accuracies ranged from 97.5 to 108.2%, and the inter‐assay accuracies ranged from 97.3 to 107.0%. The analytical method was applied to evaluate the relative bioavailability of two pharmaceutical formulations containing 8 mg of ondansetron each in 25 healthy volunteers using a randomized, two‐period crossover design. The geometric mean and respective 90% confidence interval (CI) of ondansetron test/reference percent ratios were 90.15% (81.74–99.44%) for Cmax and 93.11% (83.01–104.43%) for AUC0–t. Based on the 90% confidence interval of the individual ratios (test formulation/reference formulation) for Cmax and AUC0‐inf, it was concluded that the test formulation is bioequivalent to the reference one with respect to the rate and extent of absorption of ondansetron. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A rapid, sensitive and specific method for quantifying piracetam in human plasma using Piracetam d‐8 as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by one‐step precipitation of protein using an acetonitrile (100%). The extracts were analyzed by high‐performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC‐MS/MS). The method had a chromatographic run time of 3.8 min and a linear calibration curve over the range 0.5–50 µg/mL (r > 0.99). This LC‐MS‐MS procedure was used to assess the bioavailability of two piracetam formulations: piracetam + l‐carnitine (Piracar®; 270/330 mg tablet) and piracetam (Nootropil®; 800 mg tablet) in healthy volunteers of both sexes. The geometric means with corresponding 90% confidence interval (CI) for test/reference percentage ratios were 88.49% (90% CI = 81.19 – 96.46) for peak concentration/dose and 102.55% (90% CI = 100.62 – 104.51) for AUCinf/dose. The limit of quantitation of 0.5 µg/mL is well suited for pharmacokinetic studies in healthy volunteers. It was concluded that piracetam (Piracar®; 270/330 mg tablet) has a bioavailability equivalent to the piracetam (Nootropil®; 800 mg tablet) formulation with regard to both the rate and the extent of absorption. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Sarsasapogenin-AA13(AA13), a sarsasapogenin derivative, exhibited good neuroprotective and anti-inflammatory activities in vitro and therapeutic effects on learning and memory dysfunction in amyloid-β-injected mice. A sensitive UPLC–MS/MS method was developed and validated to quantitatively determine AA13 in rat plasma and was further applied to evaluate the pharmacokinetic behaviour of AA13 in rats that were administered AA13 intravenously and orally. This method was validated to exhibit excellent linearity in the concentration range of 1–1000 ng/mL. The lower limit of quantification was 1 ng/mL for AA13 in rat plasma. Intra-day accuracy for AA13 was in the range of 90–114%, and inter-day accuracy was in the range of 97–103 %. The relative standard deviation of intra-day and inter-day assay was less than 15%. After a single oral administration of AA13 at the dose of 25 mg/kg, Cmax of AA13 was 1266.4 ± 316.1 ng/mL. AUC0–48 h was 6928.5 ± 1990.1 h·ng/mL, and t1/2 was 10.2 ± 0.8 h. Under intravenous administration of AA13 at a dosage of 250 μg/kg, AUC0–48 h was 785.7 ± 103.3 h⋅ng/mL, and t1/2 was 20.8 ± 7.2 h. Based on the results, oral bioavailability (F %) of AA13 in rats at 25 mg/kg was 8.82 %.  相似文献   

7.
Systemic arterial hypertension is a major risk factor for cerebrovascular disease. Therefore, adequate control of blood pressure is of enormous importance. One of the many fixed‐dose single‐pill antihypertensive formulations available on the market is the combination of nebivolol and hydrochlorothiazide. The objective of this study was to develop two distinct high‐performance liquid chromatography coupled to tandem mass spectrometry methods to simultaneously quantify nebivolol and hydrochlorothiazide in human plasma. The methods were employed in a bioequivalence study, the first assay involving a nebivolol fixed‐dose single‐pill formulation based on healthy Brazilian volunteers. Nebilet HCT™ (nebivolol 5 mg + hydrochlorothiazide 12.5 mg tablet, manufactured by Menarini) was the test formulation. The reference formulations were Nebilet™ (nebivolol 5 mg tablet, manufactured by Menarini) and Clorana™ (hydrochlorothiazide 25 mg tablet, manufactured by Sanofi). For both analytes, liquid–liquid extraction was employed for sample preparation and the chromatographic run time was 3.5 min. The limits of quantification validated were 0.02 ng/mL for nebivolol and 1 ng/mL for hydrochlorothiazide. Since the 90% CI for C max, AUC(0–last) and AUC(0–inf) individual test/reference ratios were within the 80–125% interval indicative of bioequivalence, it was concluded that Nebilet HCT™ is bioequivalent to Nebilet™ and Clorana™.  相似文献   

8.
A sensitive rapid analytical method was established and validated to determine the bakkenolide A (BA) in rat plasma. This method was further applied to assess the pharmacokinetics of BA in rats receiving a single dose of BA. Liquid chromatography tandem mass spectrometry in multiple reaction monitoring mode was used in the method, and costundide was used as internal standard. A simple protein precipitation based on methanol was employed. The combination of a simple sample cleanup and short chromatographic running time (2.4 min) increased the throughput of the method substantially. The method was validated over the range of 1–1000 ng/mL with a correlation coefficient > 0.99. The lower limit of quantification was 1 ng/mL for BA in plasma. Intra‐ and inter‐day accuracies for BA were 93–112% and 103–104%, respectively, and the inter‐day precision was less than 15%. After a single oral dose of 20 mg/kg of BA, the mean peak plasma concentration (Cmax) of BA was 234.7 ± 161 ng/mL at 0.25 h. The area under the plasma concentration–time curve (AUC0–24 h) was 535.8 ± 223.7 h·ng/mL, and the elimination half‐life (T1/2) was 5.0 ± 0.36 h. In case of intravenous administration of BA at a dosage of 2 mg/kg, the area under the plasma concentration–time curve (AUC0–24 h) was 342 ± 98 h?ng/mL, and the elimination half‐life (T1/2) was 5.8 ± 0.7 h. Based on the results, the oral bioavailability of BA in rats at 20 mg/kg is 15.7%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determination of bakkenolide D (BD), which was further applied to assess the pharmacokinetics of BD. In the LC‐MS/MS method, the multiple reaction monitoring mode was used and columbianadin was chosen as internal standard. The method was validated over the range of 1–800 ng/mL with a determination coefficient >0.999. The lower limit of quantification was 1 ng/mL in plasma. The intra‐ and inter‐day accuracies for BD were 91–113 and 100–104%, respectively, and the inter‐day precision was <15%. After a single oral dose of 10 mg/kg of BD, the mean peak plasma concentration of BD was 10.1 ± 9.8 ng/mL at 2 h. The area under the plasma concentration–time curve (AUC0–24 h) was 72.1 ± 8.59 h ng/mL, and the elimination half‐life (T1/2) was 11.8 ± 1.9 h. In case of intravenous administration of BD at a dosage of 1 mg/kg, the AUC0–24 h was 281 ± 98.4 h?ng/mL, and the T1/2 was 8.79 ± 0.63 h. Based on these results, the oral bioavailability of BD in rats at 10 mg/kg is 2.57%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A new automated SPE‐LC‐ESI‐MS/MS method was developed and validated to quantify venlafaxine in human plasma using fluoxetine as an internal standard. The analytes were automatically extracted from plasma by C18 SPE cartridges, separated on a C8 RP column and analyzed by MS in the multiple reaction‐monitoring (MRM) mode. The method has a chromatographic run time of 4.0 min and a linear calibration curve over the range of 0.25–200 ng/mL (r >0.997). The between‐run precisions, based on the percent RSD for replicate quality controls (0.75; 80, and 200 ng/mL), were < 8.5% for all concentrations. The between‐run accuracies, based on the percent relative error, were < 4.0%. This method was successfully employed in a bioequivalence study of two venlafaxine capsule formulations (test formulation from Eurofarma (Brazil) and Efexor XR, reference formulation, from Wyeth‐Whitehall, Brazil) in 48 healthy volunteers of both sexes who received a single 150 mg dose of each formulation. More than 3000 samples were analyzed eliminating the analyst's exposure to hazardous organic solvents normally employed in off‐line liquid–liquid extractions. The 90% confidence interval (CI) of the individual ratio geometric mean for Test/Reference was 91.6–103.4% for AUC0–48 h and 102.2–112.6% for Cmax. Since both 90% CI for AUC0–48 h and Cmax were included in the 80–125% interval proposed by the US Food and Drug Administration (FDA) and the Brazilian National Health Surveillance Agency (ANVISA), the test formulation was considered bioequivalent to Efexor XR according to both the rate and extent of absorption.  相似文献   

11.
A simple, rapid, specific and reliable UFLC coupled with ESI‐MSMS assay method to simultaneously quantify sildenafil and N‐desmethyl sildenafil, with loperamide as internal standard, was developed. Chromatographic separation was performed on a Thermo Scientific Accucore C18 column with an isocratic mobile phase composed of 0.1% v/v formic acid in purified water–methanol (20:80, v/v), at a flow rate of 0.3 mL/min. Sildenafil, N‐desmethyl sildenafil and loperamide were detected with proton adducts at m/z 475.4 > 58.2, 461.3 > 85.2 and 477.0 > 266.1 in multiple reaction monitoring positive mode, respectively. Both analytes and internal standard were extracted by diethyl ether. The method was validated over a linear concentration range of 10–800 ng/mL for sildenafil and 10–600 ng/mL for N‐desmethyl sildenafil with correlation coefficient (r2) ≥0.9976 for sildenafil and (r2) ≥0.9992 for N‐desmethyl sildenafil. The method was precise, accurate and stable. The proposed method was applied to study the bioequivalence between a 100 mg dose of two pharmaceutical products: Viagra (original) and Edyfil (generic) products. AUC0–t, Cmax and Tmax were 2285.79 ng h/mL, 726.10 ng/mL and 0.94 h for Viagra and 2363.25 ng h/mL, 713.91 ng/mL and 0.83 hour for Edyfil. The 90% confidence interval of these parameters of this study fall within the regulatory range of 80–125%, hence they are considered as bioequivalent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A rapid, sensitive and reproducible LC–MS/MS method was developed and validated to determine iguratimod in human plasma. Sample preparation was achieved by protein precipitation with acetonitrile. Chromatographic separation was operated on an Ultimate® XB‐C18 column (2.1 × 50 mm, 3.5 μm, Welch) with a flow rate of 0.400 mL/min, using a gradient elution with acetonitrile and water which contained 2 mm ammonium acetate and 0.1% formic acid as the mobile phase. The detection was performed on a Triple Quad™ 5500 mass spectrometer coupled with an electrospray ionization interface under positive‐ion multiple reaction monitoring mode with the transition ion pairs of m/z 375.2 → 347.1 for iguratimod and m/z 244.3 → 185.0 for agomelatine (the internal standard), respectively. The method was linear over the range of 5.00–1500 ng/mL with correlation coefficients ≥0.9978. The accuracy and precision of intra‐ and inter‐day, dilution accuracy, recovery and stability of the method were all within the acceptable limits and no matrix effect or carryover was observed. As a result, the main pharmacokinetic parameters of iguratimod were as follows: Cmax, 1074 ± 373 ng/mL; AUC0–72, 13591 ± 4557 ng h/mL; AUC0–∞, 13,712 ± 4613 ng h/mL; Tmax, 3.29 ± 1.23 h; and t1/2, 8.89 ± 1.23 h.  相似文献   

13.
We aimed to determine the pharmacokinetics and safety of three single oral doses (5, 10 and 15 mg) of ivabradine hemisulfate sustained‐release tablets in healthy Chinese volunteers. A total of 12 volunteers (six males and six females) were randomized to receive a single oral dose of ivabradine hemisulfate sustained‐release tablets 5, 10 or 15 mg, with a 1‐week washout between periods. Blood samples were collected at regular intervals from 0 to 48 h after drug administration, and the concentrations of ivabradine and N‐desmethyl ivabradine were determined by HPLC–tandem mass spectrometry. Pharmacokinetic parameters were estimated by non‐compartmental analysis. After administering single doses of 5, 10 and 15 mg, the mean maximum concentration (Cmax) levels of ivabradine were 4.36, 7.29 and 12.62 ng/mL, and the mean area under the curve from time 0 to 48 h (AUC0–48) values were 55.66, 101.16 and 182.09 h·ng/mL, respectively. The mean Cmax levels of N‐desmethyl ivabradine were 1.05, 2.03 and 3.16 ng/mL, and the mean AUC0–48 values were 20.61, 39.44 and 65.72 h·ng/mL, respectively. The median time of maximum concentration (Tmax) levels of ivabradine and N‐desmethyl ivabradine were 5 h for all three doses tested. The pharmacokinetic properties of ivabradine hemisulfate sustained‐release tablets were linear at doses from 5 to 15 mg. Ivabradine hemisulfate sustained‐release tablet appears to be well tolerated in these healthy volunteers.  相似文献   

14.
A reliable and sensitive UPLC–MS/MS method was first established and validated for the simultaneous determination of seven active ingredients of Yaobitong capsule in rat plasma: ginsenoside Rg1, ginsenoside Rb1, osthole, tetrahydropalmatine, paeoniflorin, albiflorin, and ferulic acid. And this method was further applied for the integrated pharmacokinetic study of Yaobitong capsule in rats after oral administration. Plasma samples (100 μL) were precipitated with 300 μL of methanol using carbamazepine as internal standard. Chromatographic separation was achieved using an Aquity UPLC BEH C18 column (100 × 2.1 mm, 1.7 μm), with the mobile phase consisting of 0.1% formic acid and acetonitrile. The method was validated using a good linear relationship (r ≥ 0.991), and the lower limit of quantification of the analytes ranged from 0.5 to 40 ng/mL. In the integrated pharmacokinetic study, the weight coefficient was calculated by the ratio of AUC0–∞ of each component to the total AUC0–∞ of the seven active ingredients. The integrated pharmacokinetic parameters Cmax, Tmax, and t1/2 were 81.54 ± 9.62 ng/mL, 1.00 ± 0.21 h, and 3.26 ± 1.14 h, respectively. The integration of pharmacokinetic parameters showed a shorter t1/2 because of fully considering the contribution of the characteristics of each active ingredient to the overall pharmacokinetics.  相似文献   

15.
This study describes the development of a rapid and sensitive high‐performance liquid chromatography–electrospray ionization tandem mass spectrometry (LC‐MS/MS) assay for the quantification of [6]‐gingerol in mouse plasma and application to a pharmacokinetic study after dose ranging in mice. The assay involved a protein precipitation step with acetonitrile and an isocratic elution using a mobile phase consisting of acetonitrile and water containing 0.1% formic acid (80:20 v/v). The multiple reaction monitoring was based on the transition of m/z = 277.2 → 177.1 for [6]‐gingerol and 294.2 → 137.1 for nonivamide (internal standard). The assay was validated to demonstrate the specificity, linearity, recovery, accuracy, precision and stability. The calibration curves were linear over the wide concentration range of 10–10,000 ng/mL (r ≥ 0.9988). The lower limit of quantification was 10 ng/mL using a small volume of mouse plasma (20 μL). The method was successfully applied to a pharmacokinetic study in mice after intravenous injection of [6]‐gingerol at 1.5, 3 and 6 mg/kg doses. The pharmacokinetics of [6]‐gingerol were linear over the dose range studied as demonstrated by the linear increase in area under the concentration‐time curve (AUCinf) with no significant change in the systemic clearance (Cls), volume of distribution (Vss) and elimination half‐life (t1/2) as a function of dose. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A sensitive and specific LC‐MS/MS method was developed for simultaneous determination of aloe‐emodin, rhein, emodin, chrysophanol and physcion and their conjugates in rat plasma. The lower limit of quantitation of each anthraquinone was 0.020–0.040 µm . Intra‐day and inter‐day accuracies were 90.1–114.3% and the precisions were <14.6%. The matrix effects were 104.0–113.2%. The method was successfully applied to a pharmacokinetic study in rats receiving a rhubarb extract orally. The area under the concentration–time curve (AUC0–t) and peak concentration (Cmax) of free aloe‐emodin and emodin in rat plasma were much lower than those of rhein. The amounts of chrysophanol and physcion were too low to be continuously detected. After treating the plasma samples with β‐glucuronidases, each anthraquinone was detectable throughout the experimental period (36 h) and showed much higher plasma concentrations and AUC0–t. The free/total ratios of aloe‐emodin, rhein and emodin were 6.5, 49.0 and 1.7% for Cmax and 3.7, 32.5 and 1.1% for AUC0–t, respectively. The dose‐normalized AUC0–t and Cmax of the total of each anthraquinone were in the same descending order: rhein > emodin > chrysophanol > physcion > aloe‐emodin. These findings reveal phase II conjugates as the dominant in vivo existing forms of rhubarb antharquinones and warrant a further study to evaluate their contribution to the herbal activity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, a rapid, sensitive, and reliable hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC‐MS/MS) method for the determination of eurycomanone in rat plasma was developed and validated. Plasma samples were pretreated with a protein precipitation method and quercitrin was used as an internal standard (IS). A HILIC silica column (2.1 × 100 mm, 3 μm) was used for hydrophilic‐based chromatographic separation, using the mobile phase of 0.1% formic acid with acetonitrile in gradient elution at a flow rate of 0.25 mL/min. Precursor–product ion pairs for multiple‐reaction monitoring were m /z 409.1 → 391.0 for eurycomanone and m /z 449.1 → 303.0 for IS. The linear range was 2–120 ng/mL. The intra‐ and inter‐day accuracies were between 95.5 and 103.4% with a precision of <4.2%. The developed method was successfully applied to the pharmacokinetic analysis of eurycomanone in rat plasma after oral dosing with pure compound and E. longifolia extract. The C max and AUC0–t , respectively, were 40.43 ± 16.08 ng/mL and 161.09 ± 37.63 ng h/mL for 10 mg/kg eurycomanone, and 9.90 ± 3.97 ng/mL and 37.15 ± 6.80 ng h/mL for E. longifolia extract (2 mg/kg as eurycomanone). The pharmacokinetic results were comparable with each other, based on the dose as eurycomanone.  相似文献   

18.
A simple LC–tandem mass spectrometry (MS/MS) method to determine ebastine and carebastine (active metabolite) in human plasma was developed and validated. Analytes and internal standards were precipitated by protein precipitation and separated on Synergi Hydro-RP 80A column (4 μm, 50 mm × 2.0 mm; Phenomenex) by gradient elution with mobile phase A comprising 0.1% formic acid in 5 mm ammonium acetate (NH4Ac) and B comprising 100% methanol at a flow rate 0.4 mL/min. Ions were detected in positive multiple reaction monitoring mode, and they exhibited linearity over concentration range 0.01–8.0 and 1.00–300 ng/mL for ebastine and carebastine, respectively. A clinical pharmacokinetic study was conducted in healthy Chinese volunteers under fasting and fed conditions after a single oral administration of 10 mg ebastine. The maximum plasma concentration (Cmax), time to Cmax (Tmax) and elimination half-life for ebastine were 0.679 ± 0.762 ng/mL, 1.67 ± 1.43 h and 7.86 ± 6.18 h, respectively, whereas these for carebastine were 143 ± 68.4 ng/mL, 5.00 ± 2.00 h and 17.4 ± 4.97 h, respectively under fasting conditions; the corresponding values under fed conditions were 4.13 ± 2.53 ng/mL, 3.18 ± 1.09 h and 21.6 ± 7.77 h for ebastine and 176 ± 68.4 ng/mL, 6.14 ± 2.0 h and 20.0 ± 4.97 h for carebastine.  相似文献   

19.
A high‐throughput and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the determination of flunarizine in human plasma. Liquid–liquid extraction under acidic conditions was used to extract flunarizine and flunarizine‐d8 from 100 μL human plasma. The mean extraction recovery obtained for flunarizine was 98.85% without compromising the sensitivity of the method. The chromatographic separation was performed on Hypersil Gold C18 (50 × 2.1 mm, 3 μm) column using methanol–10 mm ammonium formate, pH 3.0 (90:10, v/v) as the mobile phase. A tandem mass spectrometer (API‐5500) equipped with an electrospray ionization source in the positive ion mode was used for detection of flunarizine. Multiple reaction monitoring was selected for quantitation using the transitions, m/z 405.2 → 203.2 for flunarizine and m/z 413.1 → 203.2 for flunarizine‐d8. The validated concentration range was established from 0.10 to 100 ng/mL. The accuracy (96.1–103.1%), intra‐batch and inter‐batch precision (CV ≤ 5.2%) were satisfactory and the drug was stable in human plasma under all tested conditions. The method was used to evaluate the pharmacokinetics of 5 and 10 mg flunarizine tablet formulation in 24 healthy subjects. The pharmacokinetic parameters Cmax and AUC were dose‐proportional.  相似文献   

20.
Furanodiene, a sesquiterpene component extracted from the essential oil of the rhizome of Curcuma wenyujin Y.H. Chen et C. Ling (Wen Ezhu), is widely used in traditional Chinese medicine. A sensitive analytical method was established and validated for furanodiene in rat plasma, which was further applied to assess the pharmacokinetics of furanodiene in rats receiving a single dose of furanodiene. Liquid chromatography tandem mass spectrometry (LC/MS/MS) in multiple reaction monitoring mode was used in the method and costundide was used as internal standard. A simple protein precipitation based on methanol was employed. The simple sample cleanup increased the throughput of the method substantially. The method was validated over the range of 1–1000 ng/mL with a correlation coefficient >0.99. The lower limit of quantification was 1 ng/mL for furanodiene in plasma. Intra‐ and inter‐day accuracies for furanodiene were 88–115 and 102–107%, and the inter‐day precision less than 14.4%. After a single oral dose of 10 mg/kg of furanodiene, the mean peak plasma concentration of furanodiene was 66.9 ± 23.4 ng/mL at 1 h, the area under the plasma concentration–time curve (AUC0–10 h) was 220 ± 47.8 h ng/mL, and the elimination half‐life was 1.53 ± 0.06 h. After an intravenous adminstration of furanodiene at a dosage of 5 mg/kg, the area under the plasma concentration–time curve was 225 ± 76.1 h?ng/mL, and the elimination half‐life was 2.40 ± 1.18 h. Based on this result, the oral bioavailability of furanodiene in rats at 10 mg/kg is 49.0%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号