首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Molybdenum disulfide(MoS2),a typical two-dimensional transition metallic layered material,attracts tremendous attentions in the electrochemical energy storage due to its excellent physicochemical properties.However,with the deepening of the research and exploration of the lithium storage mechanism of these advanced MoS2-based anode materials,the complex reaction process influenced by internal and external factors hinders the exhaustive understanding of the lithium storage p...  相似文献   

2.
The preparation of novel one‐dimensional core–shell Fe/Fe2O3 nanowires as anodes for high‐performance lithium‐ion batteries (LIBs) is reported. The nanowires are prepared in a facile synthetic process in aqueous solution under ambient conditions with subsequent annealing treatment that could tune the capacity for lithium storage. When this hybrid is used as an anode material for LIBs, the outer Fe2O3 shell can act as an electrochemically active material to store and release lithium ions, whereas the highly conductive and inactive Fe core functions as nothing more than an efficient electrical conducting pathway and a remarkable buffer to tolerate volume changes of the electrode materials during the insertion and extraction of lithium ions. The core–shell Fe/Fe2O3 nanowire maintains an excellent reversible capacity of over 767 mA h g?1 at 500 mA g?1 after 200 cycles with a high average Coulombic efficiency of 98.6 %. Even at 2000 mA g?1, a stable capacity as high as 538 mA h g?1 could be obtained. The unique composition and nanostructure of this electrode material contribute to this enhanced electrochemical performance. Due to the ease of large‐scale fabrication and superior electrochemical performance, these hybrid nanowires are promising anode materials for the next generation of high‐performance LIBs.  相似文献   

3.
To address the poor cycling stability and low rate capability of MoS2 as electrode materials for lithium-ion batteries (LIBs), herein, the CoS2/MoS2/PDDA-rGO/PMo12 nanocomposites are constructed via a simple hydrothermal process, combining the advantages of all three, namely, CoS2/MoS2 heterojunction and polyoxometalates (POMs) provide abundant catalytically active sites and increase the multi-electron transfer ability, and the positively charged poly(diallyldimethylammonium chloride) modified reduced graphene oxide (PDDA-rGO) improve electronic conductivity and effectively prevent the aggregation of MoS2, meanwhile stabilize the negatively charged [PMo12O40]3−. After the electrochemical testing, the resulting CoS2/MoS2/PDDA-rGO/PMo12 nanocomposite achieved 1055 mA h g−1 initial specific capacities and stabilized at 740 mA h g−1 after 150 cycles at 100 mA g−1 current density. And the specific capacities of MoS2, MoS2/PDDA-rGO, CoS2/MoS2, and CoS2/MoS2/PDDA-rGO were 201, 421, 518, and 589 at 100 mA g−1 after 150 cycles, respectively. The fact of the greatly improving capacity of MoS2-based nanocomposites suggests its potential for high performance electrode materials of LIBs. Moreover, the lithium storage mechanism of CoS2/MoS2/PDDA-rGO/PMo12 has been discussed on the basis of cyclic voltammetry with different scan rates.  相似文献   

4.
Molybdenum disulfide (MoS2) has received considerable interest for electrochemical energy storage and conversion. In this work, we have designed and synthesized a unique hybrid hollow structure by growing ultrathin MoS2 nanosheets on N‐doped carbon shells (denoted as C@MoS2 nanoboxes). The N‐doped carbon shells can greatly improve the conductivity of the hybrid structure and effectively prevent the aggregation of MoS2 nanosheets. The ultrathin MoS2 nanosheets could provide more active sites for electrochemical reactions. When evaluated as an anode material for lithium‐ion batteries, these C@MoS2 nanoboxes show high specific capacity of around 1000 mAh g?1, excellent cycling stability up to 200 cycles, and superior rate performance. Moreover, they also show enhanced electrocatalytic activity for the electrochemical hydrogen evolution.  相似文献   

5.
Much attention has recently been focused on the synthesis and application of graphene analogues of layered nanomaterials owing to their better electrochemical performance than the bulk counterparts. We synthesized graphene analogue of 3D MoS2 hierarchical nanoarchitectures through a facile hydrothermal route. The graphene‐like MoS2 nanosheets are uniformly dispersed in an amorphous carbon matrix produced in situ by hydrothermal carbonization. The interlaminar distance between the MoS2 nanosheets is about 1.38 nm, which is far larger than that of bulk MoS2 (0.62 nm). Such a layered architecture is especially beneficial for the intercalation and deintercalation of Li+. When tested as a lithium‐storage anode material, the graphene‐like MoS2 hierarchical nanoarchitectures exhibit high specific capacity, superior rate capability, and enhanced cycling performance. This material shows a high reversible capacity of 813.5 mAh g?1 at a current density of 1000 mA g?1 after 100 cycles and a specific capacity as high as 600 mAh g?1 could be retained even at a current density of 4000 mA g?1. The results further demonstrate that constructing 3D graphene‐like hierarchical nanoarchitectures can effectively improve the electrochemical performance of electrode materials.  相似文献   

6.
To deal with the large volume change for lithium-ion batteries (LIBs), we illustrate the synthesis of CoMn2O4 microspheres with sub-nanoparticles by a hydrothermal method followed by thermal treatment. The size of microsphere is approximately 2.2 μm, and the sub-nanoparticle is about 17 nm. There is sufficient void space between CoMn2O4 microspheres with sub-nanoparticles for ensuring the well structural integrity. As advanced anode for LIBs, CoMn2O4 microspheres display stable specific capacity retention of 772 mAh g?1 over 500 cycles at a current density of 100 mA g?1. Such a kind of structure is beneficial for enhanced rate and cycling capabilities in LIBs applications, which could increase contact area between electrolyte and active materials, short path for lithium ions and electrons and accommodate the volume change with additional void space during cycling. It has a great application prospect for use as electrochemical energy storage because of the enhanced performance.  相似文献   

7.
Improving the performance of anode materials for lithium-ion batteries (LIBs) is a hotly debated topic. Herein, hollow Ni−Co skeleton@MoS2/MoO3 nanocubes (NCM-NCs), with an average size of about 193 nm, have been synthesized through a facile hydrothermal reaction. Specifically, MoO3/MoS2 composites are grown on Ni−Co skeletons derived from nickel–cobalt Prussian blue analogue nanocubes (Ni−Co PBAs). The Ni−Co PBAs were synthesized through a precipitation method and utilized as self-templates that provided a larger specific surface area for the adhesion of MoO3/MoS2 composites. According to Raman spectroscopy results, as-obtained defect-rich MoS2 is confirmed to be a metallic 1T-phase MoS2. Furthermore, the average particle size of Ni−Co PBAs (≈43 nm) is only about one-tenth of the previously reported particle size (≈400 nm). If assessed as anodes of LIBs, the hollow NCM-NC hybrids deliver an excellent rate performance and superior cycling performance (with an initial discharge capacity of 1526.3 mAh g−1 and up to 1720.6 mAh g−1 after 317 cycles under a current density of 0.2 A g−1). Meanwhile, ultralong cycling life is retained, even at high current densities (776.6 mAh g−1 at 2 A g−1 after 700 cycles and 584.8 mAh g−1 at 5 A g−1 after 800 cycles). Moreover, at a rate of 1 A g−1, the average specific capacity is maintained at 661 mAh g−1. Thus, the hierarchical hollow NCM-NC hybrids with excellent electrochemical performance are a promising anode material for LIBs.  相似文献   

8.
Traditional lithium‐ion batteries that are based on layered Li intercalation electrode materials are limited by the intrinsically low theoretical capacities of both electrodes and cannot meet the increasing demand for energy. A facile route for the synthesis of a new type of composite nanofibers, namely carbon nanofibers decorated with molybdenum disulfide sheets (CNFs@MoS2), is now reported. A synergistic effect was observed for the two‐component anode, triggering new electrochemical processes for lithium storage, with a persistent oxidation from Mo (or MoS2) to MoS3 in the repeated charge processes, leading to an ascending capacity upon cycling. The composite exhibits unprecedented electrochemical behavior with high specific capacity, good cycling stability, and superior high‐rate capability, suggesting its potential application in high‐energy lithium‐ion batteries.  相似文献   

9.
锂离子二次电池是手提设备的重要电力来源。近年来,人们为了寻找更新颖更好的锂离子电极材料,开始研究晶形离子交换材料,这种材料具有开放孔道,能够让离子在多孔框架里自由的进出。一种具有层状结构的钛硅酸盐Na-JDF-L1(Na4Ti2Si8O22·4H2O)经过离子交换后被用作锂离子负极材料。它在循环200次后放电容量保持在364 mAh·g-1,并且库伦效率约为100%。通过将TiO2引入Li(Na)-JDF-L1中,有效的提高了材料的首次库伦效率和倍率放电性能。  相似文献   

10.
As a high‐capacity anode for lithium‐ion batteries (LIBs), MoS2 suffers from short lifespan that is due in part to its unstable solid electrolyte interphase (SEI). The cycle life of MoS2 can be greatly extended by manipulating the SEI with a fluoroethylene carbonate (FEC) additive. The capacity of MoS2 in the electrolyte with 10 wt % FEC stabilizes at about 770 mAh g?1 for 200 cycles at 1 A g?1, which far surpasses the FEC‐free counterpart (ca. 40 mAh g?1 after 150 cycles). The presence of FEC enables a robust LiF‐rich SEI that can effectively inhibit the continual electrolyte decomposition. A full cell with a LiNi0.5Co0.3Mn0.2O2 cathode also gains improved performance in the FEC‐containing electrolyte. These findings reveal the importance of controlling SEI formation on MoS2 toward promoted lithium storage, opening a new avenue for developing metal sulfides as high‐capacity electrodes for LIBs.  相似文献   

11.
锂离子二次电池是手提设备的重要电力来源。近年来, 人们为了寻找更新颖更好的锂离子电极材料, 开始研究晶形离子交换材料, 这种材料具有开放孔道, 能够让离子在多孔框架里自由的进出。一种具有层状结构的钛硅酸盐Na-JDF-L1(Na4Ti2Si8O22·4H2O)经过离子交换后被用作锂离子负极材料。它在循环200次后放电容量保持在364 mAh·g-1, 并且库伦效率约为100%。通过将TiO2引入Li(Na)-JDF-L1中, 有效的提高了材料的首次库伦效率和倍率放电性能。  相似文献   

12.
Low-cost Si-based anode materials with excellent electrochemical lithium storage present attractive prospects for lithium-ion batteries (LIBs). Herein, porous Si-Cu3Si-Cu microsphere@C composites are designed and prepared by means of an etching/electroless deposition and subsequent carbon coating. The composites show a core–shell structure, with a porous Si/Cu microsphere core surrounded by the N-doped carbon shell. The Cu and Cu3Si nanoparticles are embedded inside porous silicon microspheres, forming the porous Si/Cu microsphere core. The microstructure and lithium storage performance of porous Si-Cu3Si-Cu microsphere@C composites can be effectively tuned by changing electroless deposition time. The Si-Cu3Si-Cu microsphere@C composite prepared with 12 min electroless deposition delivers a reversible capacity of 627 mAh g−1 after 200 cycles at 2 A g−1, showing an enhanced lithium storage ability. The superior lithium storage performance of the Si-Cu3Si-Cu microsphere@C composite can be ascribed to the improved electronic conductivity, enhanced mechanical stability, and better buffering against the large volume change in the repeated lithiation/delithiation processes.  相似文献   

13.
The exploration of anode materials with a high degree of electrochemical utilization for Li-ion batteries (LIBs) still remains a huge challenge despite pioneering breakthroughs. Rational engineering of electrode structures/components by facile strategies would offer infinite possibilities for the development of LIBs. In this study, one-dimensional ultralong nanohybrids of ultrafine NiCoO2 nanoparticles dispersed in situ in and/or on the surface of amorphous N-doped carbon nanofibers (NCO@ANCNFs) were fabricated by a bottom-up electrospinning protocol. By virtue of synergistic structural/component features, the obtained ultralong NCO@ANCNFs with low NCO loading (≈33.6 wt %) show highly efficient Li+ storage performance with high reversible capacity, high rate capability, and long cycle life. The unusual reversible crystalline transformation during cycling was analyzed. Quantitative analysis revealed that the pseudocapacitive contribution mainly accounts for the superior lithium storage of the NCO@ANCNFs. Besides, the ability of the hybrid anode to deliver competitive Li-storage properties even without conductive carbon greatly enhances its commercial applicability. An NCO@ANCNFs//LiNi0.8Co0.15Al0.05O2 full battery was assembled and exhibited striking electrochemical properties. This contribution offers a scalable methodology to fabricate highly efficient hybrid anodes for advanced next-generation LIBs.  相似文献   

14.
Transition metal-based nanoparticle-embedded carbon materials have received increasing attention for constructing next-generation electrochemical catalysts for energy storage and conversion. However, designing hybrid carbon materials with controllable hierarchical micro/mesoporous structures, excellent dispersion of metal nanoparticles, and multiple heteroatom-doping remains challenging. Here, a novel pyridinium-containing ionic hypercrosslinked micellar frameworks (IHMFs) prepared from the core–shell unimicelle of s-poly(tert-butyl acrylate)-b-poly(4-bromomethyl) styrene (s-PtBA-b-PBMS) and linear poly(4-vinylpyridine) were used as self-sacrificial templates for confined growth of molybdenum disulfide (MoS2) inside cationic IHMFs through electrostatic interaction. After pyrolysis, MoS2-anchored nitrogen-doped porous carbons possessing tunable hierarchical micro/mesoporous structures and favorable distributions of MoS2 nanoparticles exhibited excellent electrocatalytic activity for hydrogen evolution reaction as well as small Tafel slope of 66.7 mV dec−1, low onset potential, and excellent cycling stability under acidic condition. Crucially, hierarchical micro/mesoporous structure and high surface area could boost their catalytic hydrogen evolution performance. This approach provides a novel route for preparation of micro/mesoporous hybrid carbon materials with confined transition metal nanoparticles for electrochemical energy conversion.  相似文献   

15.
In this work, we designed and successfully synthesized an interconnected carbon nanosheet/MoS2/polyaniline hybrid (ICN/MoS2/PANI) by combining the hydrothermal method and in situ chemical oxidative polymerization. The as-synthesized ICNs/MoS2/PANI hybrid showed a “caramel treat-like” architecture in which the sisal fiber derived ICNs were used as hosts to grow “follower-like” MoS2 nanostructures, and the PANI film was controllably grown on the surface of ICNs and MoS2. As a LIBs anode material, the ICN/MoS2/PANI electrode possesses excellent cycling performance, superior rate capability, and high reversible capacity. The reversible capacity retains 583 mA h/g after 400 cycles at a high current density of 2 A/g. The standout electrochemical performance of the ICN/MoS2/PANI electrode can be attributed to the synergistic effects of ICNs, MoS2 nanostructures, and PANI. The ICN framework can buffer the volume change of MoS2, facilitate electron transfer, and supply more lithium inset sites. The MoS2 nanostructures provide superior rate capability and reversible capacity, and the PANI coating can further buffer the volume change and facilitate electron transfer.  相似文献   

16.
Low storage capacity and poor cycling stability are the main drawbacks of the electrode materials for sodium‐ion (Na‐ion) batteries, due to the large radius of the Na ion. Here we show that micro‐structured molybdenum disulfide (MoS2) can exhibit high storage capacity and excellent cycling and rate performances as an anode material for Na‐ion batteries by controlling its intercalation depth and optimizing the binder. The former method is to preserve the layered structure of MoS2, whereas the latter maintains the integrity of the electrode during cycling. A reversible capacity of 90 mAh g?1 is obtained on a potential plateau feature when less than 0.5 Na per formula unit is intercalated into micro‐MoS2. The fully discharged electrode with sodium alginate (NaAlg) binder delivers a high reversible capacity of 420 mAh g?1. Both cells show excellent cycling performance. These findings indicate that metal chalcogenides, for example, MoS2, can be promising Na‐storage materials if their operation potential range and the binder can be appropriately optimized.  相似文献   

17.
Silicon (Si)-based anode materials with suitable engineered nanostructures generally have improved lithium storage capabilities, which provide great promise for the electrochemical performance in lithium-ion batteries (LIBs). Herein, a metal–organic framework (MOF)-derived unique core–shell Si/SiOx@NC structure has been synthesized by a facile magnesio-thermic reduction, in which the Si and SiOx matrix were encapsulated by nitrogen (N)-doped carbon. Importantly, the well-designed nanostructure has enough space to accommodate the volume change during the lithiation/delithiation process. The conductive porous N-doped carbon was optimized through direct carbonization and reduction of SiO2 into Si/SiOx simultaneously. Benefiting from the core–shell structure, the synthesized product exhibited enhanced electrochemical performance as an anode material in LIBs. Particularly, the Si/SiOx@NC-650 anode showed the best reversible capacities up to 724 and 702 mAh g−1 even after 100 cycles. The excellent cycling stability of Si/SiOx@NC-650 may be attributed to the core–shell structure as well as the synergistic effect between the Si/SiOx and MOF-derived N-doped carbon.  相似文献   

18.
Hierarchical MoS2 shells supported on carbon spheres (denoted as C@MoS2) have been synthesized through a one‐step hydrothermal method. The obtained hierarchical C@MoS2 microspheres simultaneously integrate the structural and compositional design rationales for high‐energy electrode materials based on two‐dimensional (2D) nanosheets. When evaluated as an anode material for lithium‐ion batteries (LIBs), the hierarchical C@MoS2 microspheres manifest high specific capacity, enhanced cycling stability and good rate capability.  相似文献   

19.
Transition metal oxide (TMO) anode materials in lithium-ion batteries (LIBs) usually suffer from serious volume expansion leading to the pulverization of structures, further giving rise to lower specific capacity and worse cycling stability. Herein, by introducing polyoxometalate (POM) clusters into TMOs and precisely controlling the amount of POMs, the MnZnCuOx-phosphomolybdic acid hybrid sub-1 nm nanosheets (MZC-PMA HSNSs) anode is successfully fabricated, where the special electron rich structure of POMs is conducive to accelerating the migration of lithium ions on the anode to obtain higher specific capacity, and the non-covalent interactions between POMs and TMOs make the HSNSs possess excellent structural and chemical stability, thus exhibiting outstanding electrochemical performance in LIBs, achieving a high reversible capacity (1157 mAh g−1 at 100 mA g−1) and an admirable long-term cycling stability at low and high current densities.  相似文献   

20.
The cost-efficient ZnMnO3 has attracted increasing attention as a prospective anode candidate for advanced lithium-ion batteries (LIBs) owing to its resourceful abundance, large lithium storage capacity and low operating voltage. However, its practical application is still seriously limited by the modest cycling and rate performances. Herein, a facile design to scalable synthesize unique one-dimensional (1D) mesoporous ZnMnO3 nanorods (ZMO-NRs) composed of nanoscale particles (≈11 nm) is reported. The 1D mesoporous structure and nanoscale building blocks of the ZMO-NRs effectively promote the transport of ions/electrons, accommodate severe volume changes, and expose more active sites for lithium storage. Benefiting from these appealing structural merits, the obtained ZMO-NRs anode exhibits excellent rate behavior (≈454 mAh g−1 at 2 A g−1) and ultra-long term cyclic performance (≈949.7 mAh g−1 even over 500 cycles at 0.5 A g−1) for efficient lithium storage. Additionally, the LiNi0.8Co0.1Mn0.1O2//ZMO-NRs full cell presents a practical energy density (≈192.2 Wh kg−1) and impressive cyclability with approximately 91 % capacity retention over 110 cycles. This highlights that the ZMO-NRs product is a highly promising high-rate and stable electrode candidate towards advanced LIBs in electronic devices and sustainable energy storage applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号