首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Ginsenoside Rh3 (GRh3) is a bacterial metabolite of ginsenoside Rg5, which is the main component of hot-processed ginseng. A simple, efficient and sensitive method was developed and validated for the determination of GRh3 in rat plasma by LC–tandem mass spectrometry. After protein precipitation with methanol/acetonitrile (1:1, vol/vol) using propranolol as the internal standard, the target analytes were separated on an XDB C18 column, with methanol containing 0.1% formic acid and water containing 0.1% formic acid used as mobile phases for gradient elution. Mass spectrometry was performed in electrospray ion source–positive ion mode and multiple reaction monitoring mode, monitoring the transitions m/z 622.5 → 425.5 and m/z 260.1 → 116.1 for GRh3 and internal standard, respectively. The concentration range of GRh3 was 20–20,000 ng/mL and the correlation coefficient (r2) was greater than 0.99. The accuracy error and relative standard deviation were below 15%. The extraction recovery and matrix effect were 74.2% to 78.7% and 96.9% to 108.4%, respectively. Under different conditions, GRh3 was stable in the range of 1.8%–8.7%. This method has been successfully applied to study the pharmacokinetics of GRh3 with an oral dose of 10.0 mg/kg and an intravenous dose of 2.0 mg/kg in rats, respectively. The absolute bioavailability of GRh3 was 37.6%.  相似文献   

2.
A specific and reliable LC–MS/MS method for the determination of rosamultin in rat plasma was validated. Plasma samples were prepared with protein precipitation method, and chromatographic separation was performed on a Thermo C18 analytical column (4.6 mm × 50 mm, 3.0 μm). The mass spectrometry (MS) analysis was conducted in positive SRM mode for the transitions of m/z 673.2 → 511.1 for rosamultin and m/z 601.1 → 330.9 for IS. The method validation was conducted over the calibration range of 1.0–500 ng/mL with the precision ≤11.03% and accuracy within ±14.64%. The assay was applied to the pharmacokinetic study after oral administration of rosamultin at a dose of 20 mg/kg in rats.  相似文献   

3.
Sparstolonin B (SsnB), a spontaneous isocoumarin compound isolated from the tuber of Scirpus yagara Ohwi. (Cyperaceae), possesses potent anti‐inflammatory and antitumor activity. In the present study, a rapid and simple UHPLC/MS/MS method for determination of SsnB in rat plasma was developed and validated. Plasma samples were pretreated by liquid–liquid extraction with ethyl acetate containing rhein as an internal standard and separated on a C18 column at 35 °C, with a gradient mobile phase consisting of acetonitrile and water containing 0.2% (v/v) formic acid within 2.1 min. MS/MS detection was accomplished in multiple reaction monitoring mode with negative electrospray ionization. The precursor–product ion transitions were m/z 266.9 [M–H]?m/z 211.0 for SsnB and m/z 283.2 [M–H]?m/z 239.0 for IS. The intra‐ and inter‐day precision (RSD) was <8.98% and the accuracy (RE) ranged from ?7.40 to 4.50%. The extraction recoveries ranged from 96.28 to 97.30%. The pharmacokinetic parameters were calculated using Win Nonlin53 software. The absolute bioavailability of SsnB was estimated to be 6.98%. The proposed method was successfully applied to a pharmacokinetic study of SsnB in rats after intravenous administration with a dose of 0.5 mg/kg and oral administration at a dose of 5 mg/kg. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
An LC‐MS/MS method was developed for the simultaneous determination of vitexin and isovitexin in rat plasma, using puerarin as the internal standard (IS). Plasma samples extracted with protein precipitation procedure were separated on a Diamonsil® C18 column (150 × 4.6 mm, 5 µm) with a mobile phase composed of methanol and 0.1% formic acid (45:55, v/v). The detection was accomplished by multiple reaction monitoring mode in positive electrospray ionization source. The optimized mass transition ion‐pairs for quantitation were m/z 431.2 → 311.1 for vitexin and isovitexin, and m/z 415.1 → 295.1 for IS. The total run time was 7.5 min for each injection. The calibration curves were linear (r2 > 0.99) over the investigated concentration range (2.00–2000 ng/mL) and the lower limits of quantification were 2.00 ng/mL in rat plasma sample. The intra‐ and inter‐day relative standard deviations were no more than 14.9% and the relative errors were within the range of ?3.2–2.1%. The extraction recoveries for both compounds were between 89.3 and 97.3%. The robust LC‐MS/MS method was further applied in the pharmacokinetic study in Sprague–Dawley rats after oral administration of Santalum album L. leaves extract at a dose of 116 mg/kg. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, a rapid, sensitive, and reliable hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC‐MS/MS) method for the determination of eurycomanone in rat plasma was developed and validated. Plasma samples were pretreated with a protein precipitation method and quercitrin was used as an internal standard (IS). A HILIC silica column (2.1 × 100 mm, 3 μm) was used for hydrophilic‐based chromatographic separation, using the mobile phase of 0.1% formic acid with acetonitrile in gradient elution at a flow rate of 0.25 mL/min. Precursor–product ion pairs for multiple‐reaction monitoring were m /z 409.1 → 391.0 for eurycomanone and m /z 449.1 → 303.0 for IS. The linear range was 2–120 ng/mL. The intra‐ and inter‐day accuracies were between 95.5 and 103.4% with a precision of <4.2%. The developed method was successfully applied to the pharmacokinetic analysis of eurycomanone in rat plasma after oral dosing with pure compound and E. longifolia extract. The C max and AUC0–t , respectively, were 40.43 ± 16.08 ng/mL and 161.09 ± 37.63 ng h/mL for 10 mg/kg eurycomanone, and 9.90 ± 3.97 ng/mL and 37.15 ± 6.80 ng h/mL for E. longifolia extract (2 mg/kg as eurycomanone). The pharmacokinetic results were comparable with each other, based on the dose as eurycomanone.  相似文献   

6.
A simple, sensitive and specific UHPLC–MS/MS method for quantification of plantagoguanidinic acid (PGA) in rat plasma was applied to investigate the pharmacokinetic behavior in vivo , using protopine as internal standard. The chromatography was separated on a Phenomenex® Luna‐C18 column (2.1 × 150 mm, 3.0 μm) within 7.0 min using a mobile phase consisting of acetonitrile–0.1% formic acid solution under gradient elution at a flow rate of 0.4 mL/min. Prepared samples were monitored by multiple reaction monitoring mode, with the target fragmentions m/z 226.2 → 84.2 for PGA and m/z 354.2 → 188.9 for IS in positive electrospray ionization. The calibration curve of PGA was linear throughout the range 1–1000 ng/mL (r = 0.9962). The lower limit of quantitation in plasma for PGA was 0.1 ng/mL, and the recovery was >88.6%. Intra‐ and interday accuracy ranged from −8.6 to 4.9%. Furthermore, this validated method was successfully used for a pre‐clinical pharmacokinetic study of PGA at a single dose of 20 and 5 mg/kg in rats via oral and intravenous administration. The study showed that PGA was absorpted rapidly and eliminated gradually with a greater absolute oral bioavailability of 70.1% in rats.  相似文献   

7.
A simple, high‐throughput and specific high‐performance liquid chromatography–tandem mass spectrometry method has been developed and validated according to the FDA guidelines for quantification of ulifloxacin in rat and rabbit plasma. The analyte was separated on a Peerless basic C18 column (33 × 4.6 mm, 3 µm) with an isocratic mobile phase of methanol–water containing formic acid (0.5%, v/v; 9:1, v/v) at a flow rate of 0.5 mL/min. The MS/MS detection was carried out by monitoring the fragmentation of m/z 350.500 → 248.500 for ulifloxacin and m/z 332.400 → 231.400 for ciprofloxacin (internal standard; IS) on a triple quadrupole mass spectrometer. The response to ulifloxacin was linear over the range 0.010–2.500 µg/mL in both plasma. The limit of detection and lower limit of quantification of ulifloxacin were determined in both species to be 0.0025 and 0.010 µg/mL, respectively. The method was successfully applied to quantitatively assess the toxicokinetics of ulifloxacin in rat and rabbit following a single 400 mg/kg (in rat) and 200 mg/kg (in rabbit) oral dose of the prulifloxacin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Sarsasapogenin-AA13(AA13), a sarsasapogenin derivative, exhibited good neuroprotective and anti-inflammatory activities in vitro and therapeutic effects on learning and memory dysfunction in amyloid-β-injected mice. A sensitive UPLC–MS/MS method was developed and validated to quantitatively determine AA13 in rat plasma and was further applied to evaluate the pharmacokinetic behaviour of AA13 in rats that were administered AA13 intravenously and orally. This method was validated to exhibit excellent linearity in the concentration range of 1–1000 ng/mL. The lower limit of quantification was 1 ng/mL for AA13 in rat plasma. Intra-day accuracy for AA13 was in the range of 90–114%, and inter-day accuracy was in the range of 97–103 %. The relative standard deviation of intra-day and inter-day assay was less than 15%. After a single oral administration of AA13 at the dose of 25 mg/kg, Cmax of AA13 was 1266.4 ± 316.1 ng/mL. AUC0–48 h was 6928.5 ± 1990.1 h·ng/mL, and t1/2 was 10.2 ± 0.8 h. Under intravenous administration of AA13 at a dosage of 250 μg/kg, AUC0–48 h was 785.7 ± 103.3 h⋅ng/mL, and t1/2 was 20.8 ± 7.2 h. Based on the results, oral bioavailability (F %) of AA13 in rats at 25 mg/kg was 8.82 %.  相似文献   

9.
Senkyunolide I is one of the major bioactive components in the herbal medicine Ligusticum chuanxiong. The aim of this study was to develop and validate a fast, simple and sensitive LC‐MS/MS method for the determination of senkyunolide I in dog plasma. The plasma samples were processed with acetonitrile and separated on a Waters Acquity UPLC BEH C18 column (50 × 2.1 mm, 1.7 μm). The mobile phase consisted of 0.1% formic acid aqueous and acetonitrile was delivered at a flow rate of 0.3 mL min−1. The detection was achieved in the positive selected reaction monitoring mode with precursor‐to‐product transitions at m/z 225.1 → 161.1 for senkyunolide I and at m/z 349.1 → 305.1 for an internal standard. The assay was linear over the tested concentration range, from 0.5 ng mL−1 to 1000 ng mL−1, with a correlation coefficient >0.9992. The mean extraction recovery from dog plasma was within the range of 85.78–93.25%, while the matrix effect of the analyte was within the range of 98.23–108.89%. The intra‐ and inter‐day precisions (RSD) were <12.12% and the accuracy (RR) ranged from 98.89% to 104.24%. The validated assay was successfully applied to pharmacokinetic and bioavailability studies of senkyunolide I in dogs. The results demonstrated that (a) senkyunolide I showed short elimination half‐life (<1 h) in dog, (b) its oral bioavailability was >40% and (c) senkyunolide I showed dose‐independent pharmacokinetic profiles in dog plasma over the dose range of 1–50 mg kg−1.  相似文献   

10.
A sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determination of bakkenolide D (BD), which was further applied to assess the pharmacokinetics of BD. In the LC‐MS/MS method, the multiple reaction monitoring mode was used and columbianadin was chosen as internal standard. The method was validated over the range of 1–800 ng/mL with a determination coefficient >0.999. The lower limit of quantification was 1 ng/mL in plasma. The intra‐ and inter‐day accuracies for BD were 91–113 and 100–104%, respectively, and the inter‐day precision was <15%. After a single oral dose of 10 mg/kg of BD, the mean peak plasma concentration of BD was 10.1 ± 9.8 ng/mL at 2 h. The area under the plasma concentration–time curve (AUC0–24 h) was 72.1 ± 8.59 h ng/mL, and the elimination half‐life (T1/2) was 11.8 ± 1.9 h. In case of intravenous administration of BD at a dosage of 1 mg/kg, the AUC0–24 h was 281 ± 98.4 h?ng/mL, and the T1/2 was 8.79 ± 0.63 h. Based on these results, the oral bioavailability of BD in rats at 10 mg/kg is 2.57%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Pogostone is an important constituent of Pogostemon cablin (Blanco) Benth., and possesses various known bioactivities. A rapid, simple and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the analysis of pogostone in rat plasma using chrysophanol as internal standard (IS). The analytes were extracted with methanol and separated using a reversed‐phase YMC‐UltraHT Pro C18 column. Elution was achieved with a mobile phase consisting of methanol–water (75:25, v/v) for 5 min at a flow rate of 400 μL/min. The precursor/product transitions (m/z) under MS/MS detection with negative electrospray ionization (ESI) were 223.0 → 139.0 and 253.1 → 224.9 for pogostone and IS, respectively. The calibration curve was linear over the concentration range 0.05–160 µg/mL (r = 0.9996). The intra‐ and inter‐day accuracy and precision were within ±10%. The validated method was successfully applied to the preclinical pharmacokinetic investigation of pogostone in rats after intravenous (5, 10 and 20 mg/kg) and oral administration (5, 10 and 20 mg/kg). Finally, the oral absolute bioavailability of pogostone in rats was calculated to be 70.39, 78.18 and 83.99% for 5, 10 and 20 mg/kg, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The purpose of this study was to develop and validate a simple and sensitive liquid chromatography tandem mass spectrometry method for the determination of ulixertinib in rat plasma. The plasma samples were precipitated with acetonitrile and then separated on a C18 column with water containing 0.1% formic acid and acetonitrile as mobile phase at a flow rate of 0.3 mL/min. Analytes were monitored on a TSQ Vantage triple quadrupole tandem mass spectrometer operated in positive electrospray ionization mode. Selected reaction monitoring transitions were m/z 433.1→262.1 for ulixertinib and m/z 450.1→260.1 for internal standard. The assay achieved good linearity over the concentration range of 0.1‐1000 ng/mL with correlation coefficient > 0.9991. The validated assay has been successfully applied to pharmacokinetic study of ulixertinib in rat after oral and intravenous administration. The results revealed that ulixertinib showed high exposure in rat plasma, low clearance, moderate oral bioavailability (45.13%), and dose‐independent pharmacokinetic profiles over the oral dose range of 1‐15 mg/kg. In addition, six metabolites from rat plasma and hepatocytes were detected and structurally identified by ultra‐high performance liquid chromatography combined with high‐resolution mass spectrometry. The metabolic pathways of ulixertinib referred to hydroxylation and dealkylation and glucuronidation.  相似文献   

13.
A sensitive rapid analytical method was established and validated to determine the bakkenolide A (BA) in rat plasma. This method was further applied to assess the pharmacokinetics of BA in rats receiving a single dose of BA. Liquid chromatography tandem mass spectrometry in multiple reaction monitoring mode was used in the method, and costundide was used as internal standard. A simple protein precipitation based on methanol was employed. The combination of a simple sample cleanup and short chromatographic running time (2.4 min) increased the throughput of the method substantially. The method was validated over the range of 1–1000 ng/mL with a correlation coefficient > 0.99. The lower limit of quantification was 1 ng/mL for BA in plasma. Intra‐ and inter‐day accuracies for BA were 93–112% and 103–104%, respectively, and the inter‐day precision was less than 15%. After a single oral dose of 20 mg/kg of BA, the mean peak plasma concentration (Cmax) of BA was 234.7 ± 161 ng/mL at 0.25 h. The area under the plasma concentration–time curve (AUC0–24 h) was 535.8 ± 223.7 h·ng/mL, and the elimination half‐life (T1/2) was 5.0 ± 0.36 h. In case of intravenous administration of BA at a dosage of 2 mg/kg, the area under the plasma concentration–time curve (AUC0–24 h) was 342 ± 98 h?ng/mL, and the elimination half‐life (T1/2) was 5.8 ± 0.7 h. Based on the results, the oral bioavailability of BA in rats at 20 mg/kg is 15.7%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Rabeprazole is a novel benzimidazole proton pump inhibitor used for the treatment of gastrointestinal disorders. It is a chiral molecule that gives rise to the possibility of stereoselective pharmacokinetics. To investigate this phenomenon, a rapid and sensitive chiral assay based on supercritical fluid chromatography tandem mass spectrometry was developed and applied to the determination of (R )‐rabeprazole and (S )‐rabeprazole in dog plasma. Sample preparation involved protein precipitation with acetonitrile after the addition of (R )‐lansoprazole as internal standard. Baseline separation of enantiomers in 4.5 min was achieved on an Acquity UPC2 system using an ACQUITY UPC2 Trefoil CEL2 column maintained at 60°C and a mobile phase consisting of methanol/CO2 (30:70, v/v) delivered at 2.5 mL/min. Detection was achieved by multiple reaction monitoring of the transitions at m/z 360.0→242.2 (rabeprazole) and 370.3→252.0 (internal standard) in the positive ion mode. The assay was linear in the range of 1–1000 ng/mL and free of matrix effects. Intra‐ and interday precisions were less than 10.0% with accuracy in the range of –2.6 to 3.1%. The method was successfully applied to a pharmacokinetic study of rabeprazole enantiomers after administration of a single oral dose of 10 mg racemate to beagle dogs.  相似文献   

15.
A simple and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous determination of sunitinib and its two metabolites in plasma of Chinese patients with metastatic renal cell carcinoma (mRCC). After simple one‐step protein precipitation with methanol–acetonitrile (1:1, v/v), all three analytes were separated on an Agilent Zorbax SB‐C18 column using a gradient mobile phase consisting of water (0.1% formic acid)–acetonitrile (0.1% formic acid) at a flow rate of 0.50 mL/min. The detection was performed in multiple reaction monitoring mode, using the transitions of m/z 399.0 → 326.2, m/z 371.0 → 283.1, m/z 343.0 → 283.1 and m/z 386.3 → 122.2 for sunitinib, M1, M2 and buspirone, respectively. The method was linear over the range of 0.10–100 ng/mL for all three analytes using only 50 μL of plasma and the lower limit of quantifications for the three analytes were all 0.10 ng/mL. The intra‐day and inter‐day precisions were all less than 15% and the accuracies were within the range of ±15%; recoveries were between 85.0 and 115%. The validated method was successfully applied to an explorative pharmacokinetic study of sunitinib in Chinese patients with mRCC following multi‐dose oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Euphol is a potential pharmacologically active ingredient isolated from Euphorbia kansui. A simple, rapid, and sensitive method to determine euphol in rat plasma was developed based on liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) for the first time. The analyte and internal standard (IS), oleanic acid, were extracted from plasma with methanol and chromatographied on a C18 short column eluted with a mobile phase of methanol–water–formic acid (95:5:0.1, v/v/v). Detection was performed by positive ion atmospheric pressure chemical ionization in selective reaction monitoring mode. This method monitored the transitions m/z 409.0 → 109.2 and m/z 439.4 → 203.2 for euphol and IS, respectively. The assay was linear over the concentration range 27–9000 ng/mL, with a limit of quantitation of 27 ng/mL. The accuracy was between –7.04 and 4.11%, and the precision was <10.83%. This LC‐MS/MS method was successfully applied to investigate the pharmacokinetic study of euphol in rats after intravenous (6 mg/kg) and oral (48 mg/kg) administration. Results showed that the absolute bioavailability of euphol was approximately 46.01%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In the present study, a simple, rapid and reliable ultrahigh‐performance liquid chromatography–tandem mass spectrometric (UHPLC–MS/MS) method was developed and validated to determine simultaneously epalrestat (EPA) and puerarin (PUE) in rat plasma for evaluation of the pharmacokinetic interaction of these two drugs. Both the analytes and glipizide (internal standard, IS) were extracted using a protein precipitation method. The separation was performed on a C18 reversed phase column using acetonitrile and 5 mmol/L ammonium acetate in water as the mobile phase with a gradient elution program. The analytes, including IS, were quantified with multiple reaction monitoring under negative ionization mode. The optimized mass transition ion pairs (m /z ) were 318.1 → 274.0 for EPA, 415.1 → 266.9 for PUE and 444.2 → 166.9 for IS. The linear calibration curves for EPA and PUE were obtained in the concentration ranges of 10–4167 and 20–8333 ng/mL, respectively (r > 0.99). The current method was successfully applied for the pharmacokinetic interaction study in rats following administration of EPA and PUE alone or co‐administration (EPA 15 mg/kg, oral; PUE 30 mg/kg, intravenous). The results showed that the combination of EPA and PUE could increase t 1/2 of EPA and reduce T max of EPA. These changes indicated that EPA and PUE might cause drug–drug interactions when co‐administrated.  相似文献   

18.
A simple and sensitive ultra-high performance liquid chromatography–tandem mass spectrometric (UHPLC–MS/MS) method was developed and validated for the determination of ARQ531, a Bruton’s tyrosine kinase inhibitor in rat plasma. After protein precipitation with acetonitrile, the samples were separated on a UPLC BEH C18 column with 0.1% formic acid in water and acetonitrile as mobile phase at a flow rate of 0.4 ml/min. The mass detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring with precursor-to-product ion transitions of m/z 479.1 > 365.1 and m/z 441.2 > 138.1 for ARQ531 and internal standard, respectively. Good linearity (correlation coefficient > 0.9988) was achieved over the concentration range of 0.5–1,000 ng/ml and the lower limit of quantitation was 0.5 ng/ml. The accuracy ranged from −13.50 to 11.35% and the precision was <8.87%. The extraction recovery was >85.56%. ARQ531 was demonstrated to be stable under the tested conditions. The validated method was further applied to a pharmacokinetic study of ARQ531 in rats after intravenous (1 mg/kg) and oral (1, 3 and 10 mg/kg) administration. The results demonstrated that ARQ531 displayed linear pharmacokinetic profiles over the oral dose range of 1–10 mg/kg and good oral bioavailability (>50%).  相似文献   

19.
A sensitive method for quantitation of SK1326 in rat plasma has been established using ultra-performance liquid chromatography–electrospray ionization tandem mass spectrometry (UPLC–ESI/MS/MS). SK1326 and the internal standard (tramadol) in plasma sample were extracted using acetonitrile. A centrifuged upper layer was then evaporated and reconstituted with a mobile phase of 0.5% formic acid–acetonitrile (35:65, v/v). The reconstituted samples were injected into a C18 reversed-phase column. Using MS/MS in the multiple reaction monitoring mode, SK1326 and tramadol were detected without severe interference from the rat plasma matrix. SK1326 produced a protonated precursor ion ([M + H]+) at m/z 432.3 and a corresponding product ion at m/z 114.4. The internal standard produced a protonated precursor ion ([M + H]+) at m/z 264.4 and a corresponding product ion at m/z 58.1. Detection of SK1326 in rat plasma by the UPLC–ESI/MS/MS method was accurate and precise with a quantitation limit of 1.0 ng/mL. The validation, reproducibility, stability and recovery of the method were evaluated. The method has been successfully applied to pharmacokinetic studies of SK1326 in rat plasma. The pharmacokinetic parameters of SK1326 were evaluated after intravenous (at a dose of 10 mg/kg) and oral (at a dose of 20 mg/kg) administration of SK1326 in rats. After oral administration (20 mg/kg) of SK1326, the F (fraction absorbed) value was ~77.1%.  相似文献   

20.
A sensitive ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method was established to analyze furanodienone in rat plasma. In the process of chromatographic separation, selected reaction monitoring transitions for furanodienone and patchouli alcohol (internal standard, IS) were m/z 231.1 → 83.2 and m/z 205.1 → 95.1, respectively. Great linearity of furanodienone in plasma samples was found in the corresponding concentration range (r > 0.995). Intra- and inter-day precisions (RSD, %) were <11.3% in plasma, and the accuracy (RE, %) was within ±10.7%. This method was used to the furanodienone study on rat pharmacokinetics after a single oral dose of 10 mg/kg of furanodiene. The results indicated that the maximum observed plasma concentration was 52.4 ± 19.1 ng/ml at 1.2 ± 0.7 h with an elimination half-life of 2.2 ± 0.7 h. The obtained data indicated that furanodienone could be moderately distributed and eliminated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号