首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A structural study of ligand exchange on chalcogen‐passivated copper nanoclusters is far less developed. Herein, we report the synthesis of polyhydrido copper nanoclusters [Cu20H11{Se2P(O iBu)2}9] ( 2 ) passivated by Se‐donor ligands via ligand replacement reaction on [Cu20H11{S2P(O iPr)2}9] ( 1 ) with NH4[Se2P(O iBu)2]. In parallel to the synthesis of 2 , cluster [Cu20H11{S2P(CH2CH2Ph)2}9] ( 4 ) was produced by the ligand exchange reaction on a new derivative of 1 , that is [Cu20H11{S2P(O nPr)2}9] ( 3 ). Solid state structures of both clusters 2 and 4 were unequivocally established by single‐crystal X‐ray diffraction studies and cluster 4 epitomizes exceptional case to preserve both the shape and size of the nanocluster during the course of ligand exchange. Structurally precise cluster 2 is the second example where the copper hydride nanocluster is stabilized by Se‐donor ligands. The anatomy of 2 can be visualized as a twisted cuboctahedral Cu13 core, two triangular faces of which are capped by a Cu6 cupola and a single Cu atom along the C3 rotational axis.  相似文献   

2.
An air‐ and moisture‐stable nanoscale polyhydrido copper cluster [Cu32(H)20{S2P(OiPr)2}12] ( 1H ) was synthesized and structurally characterized. The molecular structure of 1H exhibits a hexacapped pseudo‐rhombohedral core of 14 Cu atoms sandwiched between two nestlike triangular cupola fragments of (2×9) Cu atoms in an elongated triangular gyrobicupola polyhedron. The discrete Cu32 cluster is stabilized by 12 dithiophosphate ligands and a record number of 20 hydride ligands, which were found by high‐resolution neutron diffraction to exhibit tri‐, tetra‐, and pentacoordinated hydrides in capping and interstitial modes. This result was further supported by a density functional theory investigation on the simplified model [Cu32(H)20(S2PH2)12].  相似文献   

3.
A polyhydrido copper nanocluster, [Cu20H11{Se2P(OiPr)2}9] ( 2H ), which exhibits an intrinsically chiral inorganic core of C3 symmetry, was synthesized from achiral [Cu20H11{S2P(OiPr)2}9] ( 1H ) of C3h symmetry by a ligand‐exchange method. The structure has a distorted cuboctahedral Cu13 core, two triangular faces of which are capped along the C3 axis, one by a Cu6 cupola and the other by a single Cu atom. The Cu20 framework is further stabilized by 9 diselenophosphate and 11 hydride ligands. The number of hydride, phosphorus, and selenium resonances and their splitting patterns in multinuclear NMR spectra of 2H indicate that the chiral Cu20H11 core retains its C3 symmetry in solution. The 11 hydride ligands were located by neutron diffraction experiments and shown to be capping μ3‐H and interstitial μ5‐H ligands (in square‐pyramidal and trigonal‐bipyramidal cavities), as supported by DFT calculations on [Cu20H11(Se2PH2)9] ( 2H′ ) as a simplified model.  相似文献   

4.
The structurally precise Cu‐rich hydride nanoclusters [PdCu14H2(dtc/dtp)6(C≡CPh)6] (dtc: di‐butyldithiocarbamate ( 1 ); dtp: di‐isopropyl dithiophosphate ( 2 )) were synthesized from the reaction of polyhydrido copper clusters [Cu28H15(S2CNnBu2)12]+ or [Cu20H11{S2P(OiPr)2}9] with phenyl acetylene in the presence of Pd(PPh3)2Cl2. Their structures and compositions were determined by single‐crystal X‐ray diffraction and the results supported by ESI‐mass spectrometry. Hydride positions in 1 were confirmed by single‐crystal neutron diffraction. Each hydride is connected to one Pd0 and four CuI atoms in slightly distorted trigonalbipyramidal geometry. The anatomies of clusters 1 and 2 are very similar and DFT calculations allow rationalizing the interactions between the encapsulated [PdH2]2? unit and its Cu14 bicapped icosahedral cage. As a result, Pd has the highest coordination number (14) so far recorded.  相似文献   

5.
The first hydride-containing 2-electron palladium/copper alloys, [PdHCu11{S2P(OiPr)2}6(C≡CPh)4] ( PdHCu11 ) and [PdHCu12{S2P(OiPr)2}5{S2PO(OiPr)} (C≡CPh)4] ( PdHCu12 ), are synthesized from the reaction of [PdH2Cu14{S2P(OiPr)2}6(C≡CPh)6] ( PdH2Cu14 ) with trifluoroacetic acid (TFA). X-ray diffraction reveals that the PdHCu11 and PdHCu12 kernels consist of a central PdH unit encapsulated within a vertex-missing Cu11 cuboctahedron and complete Cu12 cuboctahedron, respectively. DFT calculations indicate that both PdHCu11 and PdHCu12 can be considered as axially-distorted 2-electron superatoms. PdHCu11 shows excellent HER activity, unprecedented within metal nanoclusters, with an onset potential of −0.05 V (at 10 mA cm−2), a Tafel slope of 40 mV dec−1, and consistent HER activity during 1000 cycles in 0.5 M H2SO4. Our study suggests that the accessible central Pd site is the key to HER activity and may provide guidelines for correlating catalyst structures and HER activity.  相似文献   

6.
7.
The first atomically and structurally precise silver‐nanoclusters stabilized by Se‐donor ligands, [Ag20{Se2P(OiPr)2}12] ( 3 ) and [Ag21{Se2P(OEt)2}12]+( 4 ), were isolated by ligand replacement reaction of [Ag20{S2P(Oi Pr)2}12] ( 1 ) and [Ag21{S2P(Oi Pr)2}12]+ ( 2 ), respectively. Furthermore, doping reactions of 4 with Au(PPh3)Cl resulted in the formation of [AuAg20{Se2P(OEt)2}12]+ ( 5 ). Structures of 3 , 4 , and 5 were determined by single‐crystal X‐ray diffraction. The anatomy of cluster 3 with an Ag20 core having C 3 symmetry is very similar to that of its dithiophosphate analogue 1 . Clusters 4 and 5 exhibit an Ag21 and Au@Ag20 core of Oh symmetry composed of eight silver capping atoms in a cubic arrangement and encapsulating an Ag13 and Au@Ag12 centered icosahedron, respectively. Both ligand exchange and heteroatom doping result in significant changes in optical and emissive properties for chalcogen‐passivated silver nanoparticles, which have been theoretically confirmed as 8‐electron superatoms.  相似文献   

8.
The Cu2+ sorption properties of the polynuclear thallium(I) N,N-cyclo-hexamethylenedithiocarbamate complex [Tl2{S2CN(CH2)6}2]n (I) are reported. The sorption capacity of the complex is ∼67 mg/g. According to EPR data, freshly precipitated I binds copper from the aqueous phase by chemisorption, which results in the formation of the β-form of the paramagnetic trinuclear complex [CuTl2{S2CN(CH2)6}4] (containing a small amount of its α-form). Scanning electron microscopic data indicate cardinal reformation of the chemisorbent particles upon copper(II) sorption, including changes in the particle shape and size.  相似文献   

9.
The formation of a C‐N bond via the cross‐couplings of aryl iodides with azoles, aryl amine, and amides can be successfully achieved in decent yield by the utilization of both [Cu 8(H){S2P(OiPr)2}6]+ and [Cu8{S2P(OEt)2}6]2+ as the pre‐catalysts.  相似文献   

10.
Bis(homoleptic) vs. Heteroleptic Copper(I) Complexes: Electrosynthesis, Spectroscopy, and Crystal Structure of {[Cu(BIK)2]+}2{[Cu4(SR)6]2?} · 3(CH3CN) · (RSH); BIK = Bis(2-methylimidazol-2-yl)ketone, R = o-Tolyl Anodic oxidation of copper in acetonitrile/2 mM tetrabutylammonium perchlorate and in the presence of bis(N-methylimidazol-2-yl)ketone (BIK) and excess o-thiocresol RSH yields the title compound as main product. Whereas the dianionic cluster [Cu4(SR)6]2? is similar to previously reported such species with R = phenyl or methyl, the purple cations [Cu(BIK)2]+ exhibit spectroscopic and structural effects of π back bonding between electron-rich Cu1 and the π acceptor ligand BIK. In contrast to the formally related [Zn(BIK)2]2+, the copper(I) complex cations exhibit distorted tetrahedral structures with almost coplanar BIK chelate arrangements which ensures maximum metal-ligand π interaction.  相似文献   

11.
Novel silylation reactions at [Ge9] Zintl clusters starting from the chlorosilanes SiR3Cl (R = iBu, iPr, Et) and the Zintl phase K4Ge9 are reported. The formation of the tris‐silylated anions [Ge9(SiR3)3] [R = iBu ( 1a ), iPr ( 1b ), Et ( 1c )] by heterogeneous reactions in acetonitrile was monitored by ESI‐MS measurements. For R = iBu 1H, 13C and 29Si NMR experiments confirmed the exclusive formation of 1a . Subsequent reactions of 1a with CuNHCDippCl and Au(PPh3)Cl result in formation of the neutral metal complex (CuNHCDipp)[Ge9{Si(iBu)3}3]·0.5 tol ( 2 ·0.5 tol) and the metal bridged dimeric unit {Au[Ge9{Si(iBu)3}3]2} ( 3a ), isolated as a (K‐18c6)+ salt in (K‐18c6)Au[Ge9{Si(iBu)3}3]2·tol ( 3 ·tol), respectively. Finally, from a toluene/hexane solution of 1a in presence of 18‐crown‐6, crystals of the compound (K‐18c6)2[Ge9{Si(iBu)3}2]·tol ( 4 ·tol), containing the bis‐silylated cluster anion [Ge9(Si(iBu)3)2]2– ( 4a ), were obtained. The compounds 2 ·0.5 tol, 3 ·tol and 4 ·tol were characterized by single‐crystal structure determination.  相似文献   

12.
The X-ray crystal structures of a series of new compounds (H3O)2[{Mn(H2O)1.5}3{Re6Se8(CN)6}2]·19H2O (1), (Me4N)2[{Co(H2O)1.5}3{Re6S8(CN)6}2]·13H2O (2), (Me4N)2[{Co(H2O)1.5}3{Re6Se8(CN)6}2]·3H2O (3), (Et4N)2[{Mn(H2O)2}3{Re6Se8(CN)6}2]·6.5H2O (4), (Et4N)2[{Ni(H2O)2}3{Re6S8(CN)6}2]·6.5H2O (5), and (Et4N)2[{Co(H2O)2}3{Re6S8(CN)6}2]·10H2O (6) are reported. All six compounds are isostructural crystallizing in cubic space group with four formulae per unit cell. For compounds 1, 3-5 the following parameters were found: (1) a=19.857(2) Å, R1=0.0283; (3 at 150 K) a=19.634(1) Å, R1=0.0572; (4) a=20.060(2) Å, R1=0.0288; (5) a=19.697(2) Å, R1=0.0224. The structures consist three-dimensional cyano-bridged framework formed by cyano cluster anions [Re6Q8(CN)6]4−, Q=S, Se and transition metal cations, M2+=Mn2+, Co2+, Ni2+. Water molecules and large organic cations Me4N+ and Et4N+ are included in cavities of this framework. Porosity of the framework, its ability to accommodate different cations and water molecules by little changes in the structure, as well as distortion of coordination framework under loss of water of crystallization is discussed.  相似文献   

13.
Treatment of molybdenum(II) acetate with thioether functionalized silylamides R2Si(NLi-C6H4–2-SR')2 leads to the formation of dinuclear MoII complexes [Mo2{R2Si(NC6H4-2-SR')2}2]. According to X-ray crystal structure analyses the complexes [Mo2{Me2Si(NC6H4-2-SMe)2}2] and [Mo2{Ph2Si(NC6H4-2-SPh)2}2] comprise a Mo2-unit which is coordinated by two μ-κ-N,N' silylamide ligands. The coordination sphere around the molybdenum atoms consists of two amide nitrogen atoms and two thioether sulfur atoms in a distorted square-planar arrangement. The Mo-Mo distances are 211.0(1) and 211.7(1) pm, resp. In the complex [Mo2{Ph2Si(NC6H4-2-SMe)2}2] the silyl amide units act as tetradentate κ-N,N',S,S'chelating ligands and the Mo-Mo distance is 218.6(1) pm.  相似文献   

14.
15.
A novel discrete [Ag21{S2P(OiPr)2}12](PF6) nanocluster has been synthesized and characterized by single‐crystal X‐ray diffraction and also NMR spectroscopy (1H, 31P), ESI mass spectrometry, and other analytic techniques (XPS, EDS, UV/Vis spectroscopy). The Ag21 skeleton has an unprecedented silver‐centered icosahedron that is capped by eight additional metal atoms. The whole framework is protected by twelve dithiophosphate ligands. According to the spherical Jellium model, the stability of monocationic nanocluster can be described by an 8‐electron superatom with 1S2 1P6 configuration, as confirmed by DFT calculations.  相似文献   

16.
Herein we report a crystal structure of [Au0.5Ag0.5@Ag20{S2P(OiPr)2}12](PF6) [Cl@Ag8{S2P(OiPr)2}6](PF6) (1), which compositions were supported by positive-mode electrospray ionization mass spectrometry. The structural elucidation indicates that the encapsulated atom of an Ag13 the entered icosahedron can be replaced by a gold atom. Surprisingly, the capping Ag atoms on the surface of an icosahedron in 1 reveal a different arrangement from the previously reported [Ag21{S2P(OiPr)2}12](PF6) of C3 symmetry. Besides, the preference for the central silver atom being oxidized by Au(I) is rationalized by the DFT calculations on three different computed [AuAg20{S2PH2}12]+ models having C1, C3, and T symmetry, respectively.  相似文献   

17.
The reaction of [Cp2Mo2(CO)4(μ,η2:2-E2)] ( A : E=P, B : E=As, Cp=C5H5) with the WCA-containing CuI salts ([Cu(CH3CN)4][Al{OC(CF3)3}4] (CuTEF, C ), [Cu(CH3CN)4][BF4] ( D ) and [Cu(CH3CN)3.5][FAl{OC6F10(C6F5)}3] (CuFAl, E )) affords seven unprecedented coordination compounds. Depending on the E2 ligand complex, the counter anion of the copper salt and the stoichiometry, four dinuclear copper dimers and three trinuclear copper compounds are accessible. The latter complexes reveal first linear Cu3 arrays linked by E2 units (E=P, As) coordinated in an η2:1:1 coordination mode. All compounds were characterized by X-ray crystallography, NMR and IR spectroscopy, mass spectrometry and elemental analysis. To define the nature of the Cu⋅⋅⋅Cu⋅⋅⋅Cu interactions, DFT calculations were performed.  相似文献   

18.
Redistribution reactions between diorganodiselenides of type [2‐(R2NCH2)C6H4]2Se2 [R = Et, iPr] and bis(diorganophosphinothioyl disulfanes of type [R′2P(S)S]2 (R = Ph, OiPr) resulted in the hypervalent [2‐(R2NCH2)C6H4]SeSP(S)R′2 [R = Et, R′ = Ph ( 1 ), OiPr ( 2 ); R = iPr, R′ = Ph ( 3 ), OiPr ( 4 )] species. All new compounds were characterized by solution multinuclear NMR spectroscopy (1H, 13C, 31P, 77Se) and the solid compounds 1 , 3 , and 4 also by FT‐IR spectroscopy. The crystal and molecular structures of 3 and 4 were determined by single‐crystal X‐ray diffraction. In both compounds the N(1) atom is intramolecularly coordinated to the selenium atom, resulting in T‐shaped coordination arrangements of type (C,N)SeS. The dithio organophosphorus ligands act monodentate in both complexes, which can be described as essentially monomeric species. Weak intermolecular S ··· H contacts could be considered in the crystal of 3 , thus resulting in polymeric zig‐zag chains of R and S isomers, respectively.  相似文献   

19.
We report on the synthesis of new derivatives of silylated clusters of the type [Ge9(SiR3)3]? (R = SiMe3, Me = CH3; R = Ph, Ph = C6H5) as well as on their reactivity towards copper and zinc compounds. The silylated cluster compounds were synthesized by heterogeneous reactions starting from the Zintl phase K4Ge9. Reaction of K[Ge9{Si(SiMe3)3}3] with ZnCl2 leads to the already known dimeric compound [Zn(Ge9{Si(SiMe3)3}3)2] ( 1 ), whereas upon the reaction with [ZnCp*2] the coordination of [ZnCp*]+ to the cluster takes place (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) under the formation of [ZnCp*(Ge9{Si(SiMe3)3}3)] ( 2 ). A similar reaction leads to [CuPiPr3(Ge9{Si(SiMe3)3}3)] ( 3 ) from [CuPiPr3Cl] (iPr=isopropyl). Further we investigated the novel silylated cluster units [Ge9(SiPh3)3]? ( 4 ) and [Ge9(SiPh3)2]? ( 5 ), which could be identified by mass spectroscopy. Bis‐ and tris‐silylated species can be synthesized by the respective stoichiometric reactions, and the products were characterized by ESI‐MS and NMR experiments. These clusters show rather different reactivity. The reaction of the tris‐silylated anion 4 with [CuPiPr3Cl] leads to [(CuPiPr3)3Ge9(SiPh3)2]+ as shown from NMR experiments and to [(CuPiPr3)4{Ge9(SiPh3)2}2] ( 6 ), which was characterized by single‐crystal X‐ray diffraction. Compound 6 shows a new type of coordination of the Cu atoms to the silylated Zintl clusters.  相似文献   

20.
(Acetonitrile‐1κN)[μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S][1H‐benzimidazole‐2(3H)‐thione‐2κS]bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)2(CH3CN)] or [Cu2(tsac)2(Sbim)2(CH3CN)] [tsac is thiosaccharinate and Sbim is 1H‐benzimidazole‐2(3H)‐thione], (I), is a new copper(I) compound that consists of a triply bridged dinuclear Cu—Cu unit. In the complex molecule, two tsac anions and one neutral Sbim ligand bind the metals. One anion bridges via the endocyclic N and exocyclic S atoms (μ‐S:N). The other anion and one of the mercaptobenzimidazole molecules bridge the metals through their exocyclic S atoms (μ‐S:S). The second Sbim ligand coordinates in a monodentate fashion (κS) to one Cu atom, while an acetonitrile molecule coordinates to the other Cu atom. The CuI—CuI distance [2.6286 (6) Å] can be considered a strong `cuprophilic' interaction. In the case of [μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S]bis[1H‐benzimidazole‐2(3H)‐thione]‐1κS;2κS‐bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)3] or [Cu2(tsac)2(Sbim)3], (II), the acetonitrile molecule is substituted by an additional Sbim ligand, which binds one Cu atom via the exocylic S atom. In this case, the CuI—CuI distance is 2.6068 (11) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号