首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
General, fast, efficient, and inexpensive methods for the synthesis of poly (amido amine) (PAMAM) dendrimers having core diversities were elaborated. In all syntheses, the major step involved an inexpensive 1,3‐dipolar cycloaddition reaction between an alkyne and an azide in the presence of Cu(I) species, which is known as the best example of click chemistry. The propargyl‐functionalized PAMAM dendrons are obtained by the divergent approach using propargylamine as an alkyne‐focal point. Three core building blocks, 1,3,5‐tris(azidomethyl)benzene, N,N,N′,N′‐tetra(azidopropylamidoethyl)‐1,2‐diaminoethane, and 4,4′‐(3,5‐bis(azidopropyloxy)benzyloxy)bisphenyl, were designed and synthesized to serve as the azide functionalities for dendrimer growth via click reactions with the alkyne‐dendrons. These three building blocks were employed together with the propargyl‐functionalized PAMAM dendrons in a convergent strategy to synthesize three kinds of PAMAM dendrimers with different core units. This novel and pivotal strategy using an efficient click methodology provides the fast and efficient synthesis of the PAMAM dendrimers with the tailed made core units. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1083–1097, 2008  相似文献   

2.
Short double‐stranded RNAs, which are known as short interfering RNA (siRNA), can be used to specifically down‐regulate the expression of the targeted gene in a process known as RNA interference (RNAi). However, the success of gene silencing applications based on the use of synthetic siRNA critically depends on efficient intracellular delivery. Polycationic branched macromolecules such as poly(amidoamine) (PAMAM) dendrimers show a strong binding affinity for RNA molecules and, hence, can provide an effective, reproducible, and relatively nontoxic method for transferring siRNAs into animal cells. Notwithstanding these perspectives, relatively few attempts have been made so far along these lines to study in detail the molecular mechanisms underlying the complexation process between PAMAMs and siRNAs. In this work we combine molecular simulation and experimental approaches to study the molecular requirements of the interaction of RNA‐based therapeutics and PAMAM dendrimers of different generations. The dendrimers and their siRNA complexes were structurally characterized, and the free energy of binding between each dendrimer and a model siRNA was quantified by using the well‐known MM/PBSA approach. DOSY NMR experiments confirmed the structural in silico prediction and yielded further information on both the complex structure and stoichiometry at low N/P ratio values. siRNA/PAMAM complex formation was monitored at different N/P ratios using gel retardation assays, and a simple model was proposed, which related the amount of siRNA complexed to the entropy variation upon complex formation obtained from the computer simulations.  相似文献   

3.
A new class of hydrophilic core – hydrophobic arms multi-arm star polymers is described: the first such materials to have silicon located in the side arms. They belong to the broad family of radially layered copolymeric amidoamine-organosilicon (PAMAMOS) dendritic macromolecules and may be viewed as nanostructured, covalently bonded, inverse micelles. Two types of hydrophobic, silicon-containing arms have been used, one based on polydimethylsiloxane (PDMS) and another based on predominantly alkyl chains attached by organosilicon chemistry to the hydrophilic polyamidoamine (PAMAM) core. The former polymers are synthesized by a reaction of amine-terminated PAMAMs by mono-functional epoxy PDMS, while the latter are obtained by haloalkylation of the same PAMAMs with a suitable unsaturated silane followed by alkylthiol addition. The Langmuir film behavior of the multi-arm star polymers with PDMS arms is described and rationalized in comparison with that of other hydrophobically modified PAMAM dendrimers reported in the literature. Their uptake of Cu2+ from aqueous solutions is also described.  相似文献   

4.
Generation 2 to generation 5 poly(amidoamine) (PAMAM) dendrimers having different terminal functionalities were analyzed by capillary electrophoresis (CE). Polyacrylamide gel electrophoresis was also used to assess the composition of the individual generations for comparison with the CE results. Separation of PAMAMs can be accomplished by either using uncoated silica or silanized silica capillaries, although reproducibility is poor using the uncoated silica capillary. To improve run-to-run reproducibility, silanized capillary was used and various internal standards were also tested. Relative and normalized migration times of primary amine terminated PAMAM dendrimers were then determined using 2,3-diaminopyridine (2,3-DAP) as an internal standard. Using silanized capillaries and internal standards, the relative and normalized migration times are fully reproducible and comparable between runs. Apparent dimensionless electrophoretic mobilities were determined and the results were compared to theoretical calculations. It is concluded that for PAMAMs a complex separation mechanism has to be considered in CE, where the movement of the ions is due to the electric field, but the separation is rather the consequence of the adsorption/desorption equilibria on the capillary wall ("electrokinetic capillary chromatography"). The described method may be used for quality control and may serve as an effective technique to analyze polycationic PAMAM dendrimers and their derivatives with different surface modifications.  相似文献   

5.
G5.0‐OH PAMAM dendrimers were used to prepare fluorescent silver clusters with weaker ultraviolet irradiation reduction method, in which the molar ratio of Ag+ to PAMAM dendrimers was the key factor to determine the geometry and properties of silver nanoparticles. The results showed that because of G5.0‐OH PAMAM dendrimers as strong encapsulatores, when the molar ratios of Ag+ to PAMAM dendrimers was smaller than 5, the obtained Agn clusters (n<5) had line structures and "molecular‐like" properties, which were highly fluorescent and quite stable in aqueous solution. Whereas when the molar ratios were between 5 and 8, the obtained Agn clusters were 2D structures and their fluorescence was weaker. When the molar ratio was larger than 8, the structure of silver nanoparticles was 3D and no fluorescence was observed from the obtained silver nanoparticles.  相似文献   

6.
This study investigates transgeden (TGD) dendrimers (polyamidoamine (PAMAM)‐type dendrimers modified with rigid polyphenylenevinylene (PPV) cores) and compares their heparin‐binding ability with commercially available PAMAM dendrimers. Although the peripheral ligands are near‐identical between the two dendrimer families, their heparin binding is very different. At low generation (G1), TGD outperforms PAMAM, but at higher generation (G2 and G3), the PAMAMs are better. Heparin binding also depends strongly on the dendrimer/heparin ratio. We explain these effects using multiscale modelling. TGD dendrimers exhibit “shape‐persistent multivalency”; the rigidity means that small clusters of surface amines are locally well optimised for target binding, but it prevents the overall nanoscale structure from rearranging to maximise its contacts with a single heparin chain. Conversely, PAMAM dendrimers exhibit “adaptive multivalency”; the flexibility means individual surface ligands are not so well optimised locally to bind heparin chains, but the nanostructure can adapt more easily and maximise its binding contacts. As such, this study exemplifies important new paradigms in multivalent biomolecular recognition.  相似文献   

7.
Polyamidoamine (PAMAM) are synthetic dendrimers which present attractive properties for the biological and biomedical fields, as they proved to be efficient drug and gene carriers. In order to increase their transfection efficiency, chemical modifications of the amino end-groups had been reported. In this work, the synthesis of the ammonia-cored G1(N) PAMAM and the consecutive chemical modification with glycine or phenylalanine amino-acids were monitored using the coupling of thin layer chromatography (TLC) with matrix–assisted laser desorption ionization–mass spectrometry (MALDI–MS). Thus, the monitoring of the PAMAM synthesis included the identification of the by-products such as defective structures of PAMAM dendrimers as well as the study of phenylalanine-grafted PAMAM oligomer distribution.  相似文献   

8.
The world of dendrimers presently encompasses several thousands of publications, including scientific papers and patents, several hundreds of different compositions, but only a few commercially available families of products (i.e. polyamidoamines (PAMAMs), until recently polypropyleneimines, and phosphorus‐containing dendrimers) This is the story of PAMAMOS, which recently became the first commercially available silicon‐containing dendrimers, and how we journeyed from our initial idea to the point of their commercialization. It focuses on three unique features of these new dendrimers: their ability to form precisely defined nano‐structured, honeycomb‐like, 2D or 3D networks; the amazing usefulness of these networks for the preparation of a variety of nanocomplexes and nancomposites; and some of the new vistas that these materials open up for engineering nanotechnology applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2755–2773, 2006  相似文献   

9.
Generation 0 through 5 polyamidoamine (PAMAM) dendrimers with three different types of groups connecting to hydrophobic C12 tails and one type of group connecting to C18 tails were synthesized and studied as monolayers at the air-water interface with a Langmuir trough. The molecular areas were significantly influenced by the size and the type of connecting group. Higher-generation (e.g., G4 and G5) amphiphilic PAMAMs with amide connecting groups were more responsive to changes in compression rate and subphase temperature and less stable than the corresponding opened epoxide- or ester-connected counterparts. Intramolecular (and possibly also intermolecular) attractive hydrogen-bond interactions between the amide connectors are proposed as the reason for this behavior.  相似文献   

10.
The first poly(amidoamine) (PAMAM) dendrimers tethered with both (η5-cyclopentadienyl) rhenium tricarbonyl (CpRe(CO)3) units and polyethylene glycol (PEG) chains were prepared and characterized by combining NMR spectroscopy and Fourier-transform IR spectroscopy. Grafting of CpRe(CO)3 units was achieved by reductive amination of formyl-CpRe(CO)3 with the peripheral amines of generation 3 and 4 PAMAMs to yield dendrimers labeled with a variable number of CpRe(CO)3 units, ranging from 8 to 14 for PAMAM-G3 and 17-30 for PAMAM-G4. PEG chains of different lengths were then attached to some of the remaining peripheral amines, and their respective ability to improve the solubility of the metallodendrimers in aqueous buffered media was evaluated. These metallodendrimers represent new infrared probes designed to be coupled to immunological reagents for the amplification of the IR signal in carbonyl metallo immunoassay (CMIA).  相似文献   

11.
We have designed two novel dendrimers with cyclam cores with appended poly(amido amine) (PAMAM) dendrons, decorated at the periphery with four and eight dansyl chromophores, respectively. The photophysical properties of the dendrimers and their Nd3+ complexes have been investigated. The energy‐transfer efficiency to the lanthanide ions from these dendrimers has been studied as a function of the generation. It has been observed that an increase in the dendrimer generation as well as the number of amide units enhances the energy transfer to the lanthanide ion.  相似文献   

12.
Liu Q  Tian J  Zhang C  Yang H  Liu Y  Qin W  Liu Z 《Electrophoresis》2011,32(11):1302-1308
We examine the influence of cationic poly(amidoamine) (PAMAM) dendrimers on capillary electroseparation–UV analysis of proteins. PAMAMs adsorbing to the capillary surface suppressed the wall‐adsorption of proteins; meanwhile, PAMAMs added to the buffer exhibited selectivity toward proteins. Presence of 3×10?4 g/mL PAMAM generation one (G 1.0) in 30 mM phosphate, at pH 2.6, rendered significant enhancement in separation efficiency; the merged peaks of myoglobin and trypsin inhibitor were separated. Moreover, the protein–dendrimer interactions changed the inherent UV absorbance profiles of proteins. UV–Vis study showed that the absorbance of cytochrome C and transferrin increased at the detection wavelength of 214 nm; their detection sensitivity enhanced by 2.44 and 2.01‐folds, respectively, with addition of 5×10?4 g/mL PAMAM G 1.0.  相似文献   

13.
Ester‐terminated polyamide dendrimers up to the third generation and amide‐terminated polyamide dendrimers of the first generation were synthesized by convergent growth. The Williamson ether synthesis and diphenylphosphoryl azide (DPPA) coupling of amines to carboxylic acids were used for the construction of the dendrimers, having alternate ether and amide generations. The methyl ester‐ and N,N‐diethylamide‐terminated dendrimers were readily soluble in common organic solvents while the N‐methylamide‐ and N‐benzylamide‐terminated dendrimers were soluble only in DMF and DMSO. Both the end and internal amide groups of the N,N‐diethylamide‐terminated dendrimer were reduced by LiAlH4 to form a polyamine dendrimer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1533–1543, 2000  相似文献   

14.
Gn (n = 3, 4, and 5) poly(amidoamine) (PAMAM) dendrimers were synthesized and peripherally modified with photocleavable o‐nitrobenzyl (NB) groups by reacting o‐nitrobenzaldehyde with the terminal amine groups of PAMAM dendrimers, followed by reducing the imine to amine groups with NaBH4. The NB‐modified dendrimers, Gn‐NB (n = 3, 4, and 5), were characterized by nuclear magnetic resonance and fourier transform infrared spectroscopy. The results showed that the NB groups were successfully attached on the periphery of the dendrimers with near 100% grafting efficiency. Such a photosensitive NB shell could be cut off on irradiation with 365 nm ultraviolet (UV) light. The encapsulation and release of guest molecules, that is, salicylic acid (SA) and adriamycin (ADR), by Gn‐NB were explored. The encapsulation capability of these dendrimers was found to increase as the guest molecular size was decreased and have dependence on the generation of dendrimers as well. For both of SA and ADR, the average encapsulation numbers per dendrimer decreased in the order of G4‐NB > G5‐NB > G3‐NB, indicating that the fourth generation dendrimer was a better container for the guest molecules. The rate of SA release was found to be greater with UV irradiation than that without, suggesting that the NB‐shelled PAMMAM dendrimers could function as a molecular container/box with photoresponsive characteristics. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 551–557, 2010  相似文献   

15.
银离子与聚酰胺-胺型树形高分子配位作用的研究   总被引:8,自引:0,他引:8  
The complexation between poly(amidoamine) (PAMAM) dendrimers and silver ion was studied in this paper. The results showed that generations and surface groups of dendrimers, reaction time, pH value, mole ratio of Ag+/PAMAM dendrimers, as well as reaction temperature strongly influence complexation between Ag+ and PAMAM dendrimers. The maximum complexing number of Ag+ that amino-, hydroxyl- and carboxylate- terminated PAMAM dendrimers could bind has been obtained. It has been found that the measured value of amino- and hydroxyl- ter-minated PAMAM is almost similar to the theory value, but to carboxylate- terminated PAMAM, there is a dis-crepancy between the measured value and theory value because of the electrostatic interaction between the silver ion and carboxyl group.  相似文献   

16.
《先进技术聚合物》2018,29(2):934-940
A novel heat‐curable silicone rubber (MCSR/Si‐PAMAM) was prepared by using siloxane polyamidoamine (Si‐PAMAM) dendrimers as cross‐linkers and polysiloxane containing γ‐chloropropyl groups as gums. The chemical cross‐linking occurs through the reaction between Si‐PAMAM dendrimers and polysiloxane containing γ‐chloropropyl groups. The effect of various amounts of cross‐linkers on mechanical properties of MCSR/Si‐PAMAM was discussed in this paper. MCSR/Si‐PAMAM exhibits favorable mechanical properties with a tensile strength of 10.06 MPa and a tear strength of 47.9 kN/m when the molar ratio r of [N‐H]/[CH2CH2CH2Cl] is 1:1. These excellent mechanical properties can be attributed to the formation of concentrative cross‐linking from Si‐PAMAM dendrimers in the cross‐linking networks, along with the introduction of Si–O–Si units in the internal structure of dendrimers. The introduction of Si–O–Si units reduces the steric hindrance of molecular structure, which facilitates the N–H bonds in the interior layers of dendrimers to react with γ‐chloropropyl groups. In addition, thermogravimetric analysis results indicate that MCSR/Si‐PAMAM is thermally stable even at high temperatures in a nitrogen atmosphere. Differential scanning calorimetry analysis reveals that the glass transition peak of MCSR/Si‐PAMAM is not identified in the temperature range −150 to −30°C, only a melting endothermic peak at −40°C.  相似文献   

17.
Herein, a promising sensing approach based on the structure fragmentation of poly(amidoamine) (PAMAM) dendrimers for the selective detection of intracellular hypochlorite (OCl?) is reported. PAMAM dendrimers were easily disrupted by a cascade of oxidations in the tertiary amines of the dendritic core to produce an unsaturated hydroxylamine with blue fluorescence. Specially, the novel fluorophore was only sensitive to OCl?, one of reactive oxygen species (ROS), resulting in an irreversible fluorescence turn‐off. The fluorescent hydroxylamine was selectively oxidised by OCl? to form a labile oxoammonium cation that underwent further degradation. Without using any troublesomely synthetic steps, the novel sensing platform based on the fragmentation of PAMAM dendrimers, can be applied to detect OCl? in macrophage cells. The results suggest that the sensing approach may be useful for the detection of intracellular OCl? with minimal interference from biological matrixes.  相似文献   

18.
While the synthesis of amide bonds is now one of the most reliable organic reactions, functionalization of amide carbonyl groups has been a long‐standing issue due to their high stability. As an ongoing program aimed at practical transformation of amides, we developed a direct nucleophilic addition to N‐alkoxyamides to access multisubstituted amines. The reaction enabled installation of two different functional groups to amide carbonyl groups in one pot. The N‐alkoxy group played important roles in this reaction. First, it removed the requirement for an extra preactivation step prior to nucleophilic addition to activate inert amide carbonyl groups. Second, the N‐alkoxy group formed a five‐membered chelated complex after the first nucleophilic addition, resulting in suppression of an extra addition of the first nucleophile. While diisobutylaluminum hydride (DIBAL‐H) and organolithium reagents were suitable as the first nucleophile, allylation, cyanation, and vinylation were possible in the second addition including inter‐ and intramolecular reactions. The yields were generally high, even in the synthesis of sterically hindered α‐trisubstituted amines. The reaction exhibited wide substrate scope, including acyclic amides, five‐ and six‐membered lactams, and macrolactams.  相似文献   

19.
Titrations of commercial diaminobutane (DAB) and polyamidoamine (PAMAM) dendrimers by vitamins C (ascorbic acid, AA), B3 (nicotinic acid), and B6 (pyridoxine) were monitored by 1H NMR spectroscopy using the chemical shifts of both dendrimer and vitamin protons and analyzed by comparison with the titration of propylamine. Quaternarizations of the terminal primary amino groups and intradendritic tertiary amino groups, which are nearly quantitative with vitamin C, were characterized by more or less sharp variations (Δδ) of the 1H chemical shift (δ) at the equivalence points. The peripheral primary amino groups of the DAB dendrimers were quaternarized first, but not selectively, whereas a sharp chemical‐shift variation was recorded for the inner methylene protons near the tertiary amines, thereby indicating encapsulation, when all the dendritic amines were quaternarized. With DAB‐G5‐64‐NH2, some excess acid is required to protonate the inner amino groups, presumably because of basicity decrease due to excess charge repulsion. On the other hand, this selectivity was not observed with PAMAM dendrimers. The special case of the titration of the dendrimers by vitamin B6 indicates only dominant supramolecular hydrogen‐bonding interactions and no quaternarization, with core amino groups being privileged, which indicates the strong tendency to encapsulate vitamins. With vitamin B3, a carboxylic acid, titration of DAB‐G3‐16‐NH2 shows that only six peripheral amino groups are protonated on average, even with excess vitamin B3, because protonation is all the more difficult due to increased charge repulsion, as positive charges accumulate around the dendrimer. Inner amino groups interact with this vitamin, however, thus indicating encapsulation presumably with supramolecular hydrogen bonding without much charge transfer.  相似文献   

20.
The effect of PAMAM dendrimers (generations G3, G4 and G5) on the fibrillation of α‐synuclein was examined by fluorescence and CD spectroscopy, TEM and SANS. PAMAM dendrimers inhibited fibrillation of α‐synuclein and this effect increased both with generation number and PAMAM concentration. SANS showed structural changes in the formed aggregates of α‐synuclein – from cylindrical to dense three‐dimensional ones – as the PAMAM concentration increased, on account of the inhibitory effect. PAMAM also effectively promoted the breaking down of pre‐existing fibrils of α‐synuclein. In both processes – that is, inhibition and disassociation of fibrils – PAMAM redirected α‐synuclein to an amorphous aggregation pathway.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号